Factores que influyen en la estabilidad de las nanopartículas de plata dispersas en el propóleo
DOI:
https://doi.org/10.18378/aab.v8i0.7805Palabras clave:
Biotecnología, Nanopartículas, Nanotecnología, Espectrofotómetro Ultravioleta-VisibleResumen
El propóleo es un material resinoso con una composición peculiar que estimula varias preguntas desde civilizaciones antiguas. Estas preguntas están relacionadas con las diferentes propiedades del propóleo, como las actividades antioxidantes, antimicrobianas, antivirales, antimutagénicas, antiinflamatorias y cicatrizantes. Así, estas propiedades presentes en el propóleo se están utilizando en productos bio-nanotecnológicos debido, por ejemplo, a su alto contenido en flavonoides y sustancias fenólicas que actúan en sinergia con las propiedades que se encuentran en las nanopartículas de plata. En este artículo se discutirán diferentes factores físico-químicos que pueden influir en la estabilidad de las nanopartículas de plata dispersas en el propóleo. Las caracterizaciones por espectrofotometría ultravioleta visible definen la seguridad del nanosistema coloidal.
Descargas
Citas
AHMED, R.; TANVIR, E. M.; HOSSEN, MD. S.; AFROZ, R.; AHMMED, I.; RUMPA, N.E.N.; PAUL, S.; GAN, S. H.; SULAIMAN, S. A.; KHALIL, M. D. I. Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats. Evidence-Based Complementary and Alternative Medicine, v. 2017, p. 5370545, 2017. DOI: https://doi.org/10.1155/2017/5370545
ANJUM, S. I.; ULLAH, A.; KHAN, K. A.; ATTAULLAH, M.; KHAN, H.; ALI, H.; BASHIR, M. A.; TAHIR, M.; ANSARI, M. J.; GHRAMH, H. A.; ADGABA, N.; DASH, C. K. Composition and functional properties of propolis (bee glue): A review. Saudi Journal of Biological Sciences, v. 26, n. 7, p. 1695–1703, 2019. DOI: https://doi.org/10.1016/j.sjbs.2018.08.013
ANTUNES FILHO, S.; BACKX, B. P. Nanotecnologia e seus impactos na sociedade. Revista Tecnologia e Sociedade, v. 16, n. 40, p. 1–15, 2020. DOI: https://doi.org/10.3895/rts.v16n40.9870
ANTUNES FILHO, S.; SANTOS, O. A. L.; SANTOS, M. S.; BACKX, B. P. Exploiting Nanotechnology to Target Viruses. Journal of Nanotechnology and Nanomaterials, v. 1, n. 1, 2020.
BADAWY, A. M. E.; LUXTON, T. P.; SILVA, R. G.; SCHECKEL, K. G.; SUIDAN, M. T.; TOLAYMAT, T. M. Impact of Environmental Conditions (pH, Ionic Strength, and Electrolyte Type) on the Surface Charge and Aggregation of Silver Nanoparticles Suspensions. Environmental Science & Technology, v. 44, n. 4, p. 1260–1266, 2010. DOI: https://doi.org/10.1021/es902240k
CAI, W.; XIAO, C.; QIAN, L.; CUI, S. Detecting van der Waals forces between a single polymer repeating unit and a solid surface in high vacuum. Nano Research, v. 12, n. 1, p. 57–61, 2019. DOI: https://doi.org/10.1007/s12274-018-2176-8
CHAMBERLIN D.; HADLEY J.; LIU M.; TRUTNA R. Nanoparticle Measurement by Spectroscopic Mie Scattering. TechConnect Briefs, v. 1, n. 2008, p. 834–837, 2008.
DOS SANTOS, M.S.; BACKX, B. P. A própolis e a bionanotecnologia. A Interface do Conhecimento sobre Abelhas. Atena Editora, 2019. cap.1, p.1-12. DOI: https://doi.org/10.22533/at.ed.0621915101
DURÁN, N.; ROLIM, W. R.; DURÁN, M.; FÁVARO, W. J.; SEABRA, A. B. Nanotoxicology of silver nanoparticles: toxicity in aninals and humans. Química Nova, v. 42, n. 2, p. 206–213, 2019.
FUNARI, C. S.; FERRO, V. O. Análise de própolis. Food Science and Technology, v. 26, n. 1, p. 171–178, 2006. DOI: https://doi.org/10.1590/S0101-20612006000100028
JASUJA, N. D.; GUPTA, D. K.; REZA, M.; JOSHI, S. C. Green Synthesis of AgNPs Stabilized with biowaste and their antimicrobial activities. Brazilian Journal of Microbiology, v. 45, n. 4, p. 1325–1332, 2014. DOI: https://doi.org/10.1590/S1517-83822014000400024
KANWAL, Z.; RAZA, M. A.; RIAZ, S.; MANZOOR, S.; TAYYEB, A.; SAJID, I.; NASEEM, S. Synthesis and characterization of silver nanoparticle-decorated cobalt nanocomposites (Co@AgNPs) and their density-dependent antibacterial activity. Royal Society Open Science, v. 6, n. 5, p. 182135, 2019. DOI: https://doi.org/10.1098/rsos.182135
LEE, S. H.; JUN, B. H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. International Journal of Molecular Sciences, v. 20, n. 4, 2019. DOI: https://doi.org/10.3390/ijms20040865
LI, B.; FENG, Z.; HE, L.; LI, W.; WANG, Q.; LIU, J.; HUANG, J.; ZHENG, Y.; MA, Y.; YANG, X.; WANG, K. Self-Assembled Supramolecular Nanoparticles for Targeted Delivery and Combination Chemotherapy. ChemMedChem, v. 13, n. 19, p. 2037–2044, 2018. DOI: https://doi.org/10.1002/cmdc.201800291
LIAW, J. W.; TSAI, S. W.; LIN, H. H.; YEN, T. C.; CHEN, B. R. Wavelength-dependent Faraday–Tyndall effect on laser-induced microbubble in gold colloid. Journal of Quantitative Spectroscopy and Radiative Transfer, v. 113, n. 17, p. 2234–2242, 2012. DOI: https://doi.org/10.1016/j.jqsrt.2012.08.002
LINIC, S.; ASLAM, U.; BOERIGTER, C.; MORABITO, M. Photochemical transformations on plasmonic metal nanoparticles. Nature Materials, v. 14, n. 6, p. 567–576, 2015. DOI: https://doi.org/10.1038/nmat4281
LUSTOSA, S. R.; GALINDO, A. B.; NUNES, L. C. C.; RANDAU, K. P.; ROLIM NETO, P. J. Propolis: updates on chemistry and pharmacology. Revista Brasileira de Farmacognosia, v. 18, n. 3, p. 447–454, 2008. DOI: https://doi.org/10.1590/S0102-695X2008000300020
MA, X.; ZARE, Y.; RHEE, K. Y. A Two-Step Methodology to Study the Influence of Aggregation/Agglomeration of Nanoparticles on Young’s Modulus of Polymer Nanocomposites. Nanoscale Research Letters, v. 12, n. 1, p. 621, 2017. DOI: https://doi.org/10.1186/s11671-017-2386-0
MARCUCCI, M. C.; FERRERES, F.; GARCÍA-VIGUERA, C.; BANKOVA, V. S.; DE CASTRO, S. L.; DANTAS, A. P.; VALENTE, P. H.; PAULINO, N. Phenolic compounds from Brazilian propolis with pharmacological activities. Journal of Ethnopharmacology, v. 74, n. 2, p. 105–112, 2001. DOI: https://doi.org/10.1016/S0378-8741(00)00326-3
MELO JR., M. A.; SANTOS, L. S. S.; GONÇALVES, M. do C.; NOGUEIRA, A. F. Preparation of silver and gold nanoparticles: a simple method to introduce nanotechnology into teaching laboratories. Química Nova, v. 35, n. 9, p. 1872–1878, 2012. DOI: https://doi.org/10.1590/S0100-40422012000900030
MOORE, T. L.; RODRIGUEZ-LORENZO, L.; HIRSCH, V.; BALOG, S.; URBAN, D.; JUD, C.; ROTHEN-RUTISHAUSER, B.; LATTUADA, M.; PETRI-FINK, A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chemical Society Reviews, v. 44, n. 17, p. 6287–6305, 2015. DOI: https://doi.org/10.1039/C4CS00487F
PARESQUE, M.; OLIVEIRA, E.; DE CASTRO, J. Influência do tempo de revestimento no tamanho e estabilidade de nanoparticulas de magnetita para tratamentos de hipertermia magnética. Tecnologia em Metalurgia Materiais e Mineração, v. 16, 2019. DOI: https://doi.org/10.4322/2176-1523.20191639
PEREIRA, A. S.; SEIXAS, F. R. M. S.; AQUINO NETO, F. R. De. Propolis: 100 years of research and future perspectives. Química Nova, v. 25, n. 2, p. 321–326, 2002. DOI: https://doi.org/10.1590/S0100-40422002000200021
PHU, D. V.; LANG, V. T. K.; LAN, N. T. K.; DUY, N. N.; CHAU, N. D.; DU, B. D.; CAM, B. D.; HIEN, N. Q. Synthesis and antimicrobial effects of colloidal silver nanoparticles in chitosan by γ-irradiation. Journal of Experimental Nanoscience, v. 5, n. 2, p. 169–179, 2010. DOI: https://doi.org/10.1080/17458080903383324
POLTE, J.; TUAEV, X.; WUITHSCHICK, M.; FISCHER, A.; THUENEMANN, A. F.; RADEMANN, K.; KRAEHNERT, R.; EMMERLING, F. Formation Mechanism of Colloidal Silver Nanoparticles: Analogies and Differences to the Growth of Gold Nanoparticles. ACS Nano, v. 6, n. 7, p. 5791–5802, 2012. DOI: https://doi.org/10.1021/nn301724z
PRASAD, R. Synthesis of Silver Nanoparticles in Photosynthetic Plants. Journal of Nanoparticles, v. 2014, 2014. DOI: https://doi.org/10.1155/2014/963961
REDASANI, V. K.; PATEL, P. R.; MARATHE, D. Y.; CHAUDHARI, S. R.; SHIRKHEDKAR, A. A.; SURANA, S. J. A review on derivative uv-spectrophotometry analysis of drugs in pharmaceutical formulations and biological samples review. Journal of the Chilean Chemical Society, v. 63, n. 3, p. 4126–4134, 2018. DOI: https://doi.org/10.4067/s0717-97072018000304126
REIMERS, J. R.; FORD, M. J.; MARCUCCIO, S. M.; ULSTRUP, J.; HUSH, N. S. Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles. Nature Reviews Chemistry, v. 1, n. 2, p. 1–13, 2017. DOI: https://doi.org/10.1038/s41570-017-0017
ROCHA, F. R. P.; TEIXEIRA, L. S. G. Strategies to increase sensitivity in UV-VIS spectrophotometry. Química Nova, v. 27, n. 5, p. 807–812, 2004. DOI: https://doi.org/10.1590/S0100-40422004000500021
RODRIGUES, J. F. B.; BRANDÃO, P. E. de S.; GUIMARÃES, P. Q.; PINTO, M. R. de O.; WELLEN, R. M. R.; FOOK, M. V. L. Aplicação de método estatístico no estudo da influência do peróxido de hidrogênio e do borohidreto de sódio na síntese de nanopartículas de prata (AGNPS). Matéria (Rio de Janeiro), v. 24, n. 3, 2019. DOI: https://doi.org/10.1590/s1517-707620190003.0708
SANTOS, J. F. L.; SANTOS, M. J. L.; THESING, A.; TAVARES, F.; GRIEP, J.; RODRIGUES, M. R. F. Ressonância de plasmon de superfície localizado e aplicação em biossensores e células solares. Química Nova, v. 39, n. 9, p. 1098–1111, 2016. DOI: https://doi.org/10.21577/0100-4042.20160126
SANTOS, M.; SANTOS, O.; FILHO, S.; SANTANA, J.; SOUZA, F.; BACKX, B. Can Green Synthesis of Nanoparticles be Efficient all Year Long? Nanomaterial Chemistry and Technology, v.1, p. 32–36, 2019. DOI: https://doi.org/10.33805/2690-2575.110
SFORCIN, J. M. Biological Properties and Therapeutic Applications of Propolis. Phytotherapy research: PTR, v. 30, n. 6, p. 894–905, 2016. DOI: https://doi.org/10.1002/ptr.5605
SHARMA, R. K.; GULATI, S.; MEHTA, S. Preparation of Gold Nanoparticles Using Tea: A Green Chemistry Experiment. Journal of Chemical Education, v. 89, n. 10, p. 1316–1318, 2012. DOI: https://doi.org/10.1021/ed2002175
WANG, X.; QIN, M.; FANG, F.; JIA, B.; WU, H.; QU, X.; VOLINSKY, A. A. Effect of glycine on one-step solution combustion synthesis of magnetite nanoparticles. Journal of Alloys and Compounds, v. 719, p. 288–295, 2017. DOI: https://doi.org/10.1016/j.jallcom.2017.05.187
YANG, H.; WANG, Y.; CHEN, X.; ZHAO, X.; GU, L.; HUANG, H.; YAN, J.; XU, C.; LI, G.; WU, J.; EDWARDS, A. J.; DITTRICH, B.; TANG, Z.; WANG, D.; LEHTOVAARA, L.; HÄKKINEN, H.; ZHENG, N. Plasmonic twinned silver nanoparticles with molecular precision. Nature Communications, v. 7, n. 1, p. 12809, 2016. DOI: https://doi.org/10.1038/ncomms12809
ZHANG, X.-F.; LIU, Z.-G.; SHEN, W.; GURUNATHAN, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. International Journal of Molecular Sciences, v. 17, p. 1534, 2016. DOI: https://doi.org/10.3390/ijms17091534
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Mayara Santana dos Santos y Bianca Pizzorno Backx
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.