

I WORKSHOP DE HORTICULTURA NO SEMIÁRIDO & VIII SEMANA DE AGRONOMIA

02 a 06 de setembro de 2024

Status celular da melancieira cv. Crimson Sweet sob lâminas de irrigação e aplicação de ácido silícico

Marcelo Sebastião de SOUSA1; Caio da Silva SOUSA²; Alisson de Lima FIGUERED³; Franklin Suassuna de SOUSA⁴; Lauriane Almeida dos Anjos SOARE⁵; Evandro Franklin de MESQUITA⁶

I Workshop de Horticultura no semiárido & VIII Semana de Agronomia

¹ Universidade Estadual da Paraíba; Universidade Federal de Campina Grande, marcelosousa1345sebastiao@gmail.com

RESUMO: A melancia é uma das olerícolas de destaque na agricultura nacional e uma das mais comercializadas para o exterior, com grande aceitabilidade popular, sendo sua produção expressiva na região Nordeste, que apresenta alguns desafios em condição de semiaridez como, períodos com escassez de chuvas. Objetivou-se com esse trabalho avaliar os efeitos da adubação silicatada associada a diferentes lâminas de irrigação, de modo a otimizar o status hídrico da melancia na microrregião de Catolé do Rocha – PB. O experimento foi conduzido em campo, de agosto a novembro de 2023, utilizando um delineamento em blocos casualizados com cinco lâminas de irrigação (60, 70, 80, 90 e 100% da ETc) e duas doses de silício (0 e 600 mg L-1 de ácido silícico). As variáveis analisadas foram perda de turgescência foliar (PTF) e déficit de saturação hídrica (DSH). A lâmina de irrigação de 100% da evapotranspiração da cultura (ETc) foi a mais eficaz para manter a turgescência e minimizar o efeito do déficit hídrico. A aplicação de silício demonstrou uma redução na perda de turgescência foliar e no déficit de saturação hídrica, melhorando a integridade das membranas e a eficiência na retenção de água em plantas de melancieira cv. Crimson Sweet.

PALAVRAS-CHAVE: Melancia; Adubação silicatada; Manejo de água; Déficit hídrico.

INTRODUÇÃO

A melancieira (*Citrullus lanatus* Thumb. Mansf) é uma cultura originária do continente africano, pertencente à família das cucurbitáceas, de grande destaque na agricultura nacional, importância social e econômica. Apresenta grande aceitabilidade popular, sendo a segunda olerícola mais produzida no Brasil e a quarta mais comercializada para o exterior (FABIAN et al., 2022). A cv. Crimson Sweet é um dos híbridos comerciais mais plantado, do Nordeste ao Sul do país, em virtude do sabor doce encontrado na polpa de seus frutos (DIAS; SANTOS, 2019).

Embora a região Nordeste do Brasil ofereça condições edafoclimáticas favoráveis ao cultivo da melancia, o período de estiagem (seca) característico do Alto Sertão Paraibano, que geralmente se estende de junho a dezembro (MESQUITA et al., 2021), pode limitar significativamente o status celular das culturas, e a consequente produção na microrregião de Catolé do Rocha. Nesse contexto, agricultura irrigada é algo indispensável para se obter uma produção contínua e eficaz (PRACIANO et al., 2019), precisando dispor de técnicas de manejo do uso da água que minimizem os riscos de perda.

Além disso, a adubação silicatada tem apresentado efeito benéfico no crescimento vegetal e elevado a tolerância das culturas agrícolas à seca, ou em condições específicas combinadas a altas temperaturas, mitigando os efeitos negativos dos estresses abióticos e bióticos (AHSAN et al., 2023; MESQUITA et al., 2024). O silício (Si) confere à planta uma maior resistência mecânica, além de estimular a formação de produtos químicos e ativar mecanismos bioquímicos (complexos reguladores de proteção) como respostas atenuantes aos estresses abióticos, que minimizam a transpiração e maximizam a fotossíntese, resultando no aumento do crescimento e ganho de produtividade e qualidade da olerícola (BHAT et al., 2019; COSKUN et al., 2019; ALI et al., 2020).

Considerando a falta de estudos aprofundados sobre técnicas eficazes de irrigação combinada com a adubação silicatada para a melancia cv. Crimson Sweet, o presente trabalho teve por objetivo avaliar os efeitos da adubação silicatada associada a diferentes lâminas de irrigação, de modo a otimizar o status hídrico da melancia na microrregião de Catolé do Rocha, localizada no Alto Sertão Paraibano.

MATERIAL E MÉTODOS

Conduzido em condições de campo, o experimento foi realizado entre os meses de agosto a novembro de 2023, no Centro de Ciências Humanas e Agrárias da Universidade Estadual da Paraíba, situado na cidade de Catolé do Rocha – PB (6º 20' 38" S, 37º 44' 48" O, altitude de 275 m). O solo da área experimental, segundo os critérios do Sistema Brasileiro de Classificação — SiBCS, foi classificado como NEOSSOLO FLÚVICO Eutrófico (EMBRAPA, 2018).

O delineamento adotado foi em blocos casualizados em parcelas subdivididas 5 × 2, referentes a cinco lâminas de irrigação (60, 70, 80, 90 e 100% da Evapotranspiração da cultura - ETc), e as subparcelas doses de adubação silicatada (0 e 600 mg L⁻¹ de ácido silícico) com quatro repetições e 24 plantas por parcela. A preparação do solo incluiu uma aração a 50 cm de profundidade. As covas foram abertas com dimensões 0,3 × 0,3 × 0,3 m de largura, comprimento e profundidade. As subparcelas mediam 6 m × 4 m de largura e comprimento, espaçadas entre si por 1 m. Cada subparcela era composta por três fileiras com espaçamento de 2,0 m entre linhas e 1,0 entre plantas, contendo 12 plantas por subparcelas, com 24 plantas por parcela e 120 plantas por bloco, multiplicado por quatro repetições, o que resultou em um total de 480 plantas.

A evapotranspiração da cultura – ETc foi obtida pelo produto entre a evapotranspiração de referência (ET₀, mm dia⁻¹), estimada a partir dos dados de evaporação do tanque Classe "A", corrigida pelo Kt do tanque (0,75); e o coeficiente de cultura – ke recomendados para a melancia que foram respectivamente 0,40; 1,00; e 0,75 para os estádios da cultura inicial de 15 a 35 dias, médio de 36 a 70 e final de 71 a 105 (ALLEN et al., 1998), (ETc = ET₀ × Kc). Para obtenção do uso consuntivo das plantas (Uc), foi considerado o percentual de área molhada (P) = 100%. Dessa forma, através do cálculo da lâmina de irrigação líquida diária (LLD = ETc) onde LLD = Uc × P/100 (mm d⁻¹), foram determinadas as lâminas fornecidas, correspondentes a 60; 70; 80; 90 e 100% LLD, sendo as parcelas independentes, onde as lâminas foram fornecidas pela a diferenciação do tempo de irrigação. A diferenciação das lâminas foi realizada dez dias após o transplantio (DAT).

O Si foi aplicado via foliar, em forma de pulverizações, entre 17:00 e 18:00h, fracionada em três aplicações, parceladas igualmente em 200 mg L⁻¹, diluído em 30 L de água, nos estádios de desenvolvimento inicial (15 (DAT)), médio (30 (DAT)) e florescimento (45 (DAT)), perfazendo o total de 600 mg L⁻¹ de ácido silícico, até o ponto de escorrimento nas folhas. Para a quebra da tensão superficial da água, foi utilizado o produto Haiten[®] (espalhante adesivo não iônico) para obter melhores resultados nas pulverizações.

Aos 70 DAT foram avaliadas as variáveis de perda de turgescência foliar (PTF) e déficit de saturação hídrica (DSH), utilizando a metodologia descrita por Cairo (1995).

Os dados foram submetidos a normalidade de erro e homogeneidade de variância pelo teste de Shapiro e Wilk e Bartlett, posteriormente, foi aplicada a análise de variância pelo teste F ($P \le 0.05$), e conforme a significância dos fatores foi aplicada a regressão linear ($R^2 > 0.6$). Para a realização das análises foi utilizado o software estatístico Sisvar, versão 5.6.

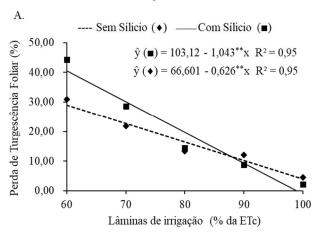
RESULTADOS E DISCUSSÃO

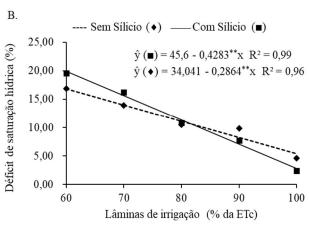
Verificou-se com o resumo da análise de variância (Tabela 1) para o *status* hídrico vegetal em plantas de melancieira cv. Crimson Sweet sob lâminas de irrigação e adubação silicatada, efeito significativo da interação lâminas × silício pelo teste F (P < 0,05) para as variáveis de perda de turgescência foliar (PTF), déficit de saturação hídrica (DSH, o que mostra a dependência dos fatores combinados.

Tabela 1. Resumo da análise de variância para as variáveis de perda de turgescência foliar (PTF), déficit de saturação hídrica (DSH) em plantas de melancieira cv. Crimson Sweet sob lâminas de irrigação e adubação silicatada.

FONTE DE VARIAÇÃO GL —		QUADRADOS MÉDIOS	
		PTF	DSH
Bloco	3	43,09 ns	6,82 ^{ns}
Lâmina (LM)	4	1456,59**	259,34**
Erro A	12	27,38	5,20
Silício (Si)	1	99,38*	0,41 ^{ns}
$LM \times Si$	4	97,83**	10,87*

Marcelo Sebastião de Sousa et al. Status celular da melancieira cv. Crimson Sweet sob lâminas de irrigação e aplicação de ácido silícico. In: I Workshop de Horticultura no Semiárido & VIII Semana de Agronomia, 2024. Anais... Caderno Verde de Agroecologia e Desenvolvimento Sustentável, Pombal, v. 13, n.3, e-10761, 2024.


Erro B	15	18,76	2,58
CV (A) (%)	-	28,91	20,33
CV (B) (%)	-	23,93	14,31


ns não significativo; ** significativo ao nível de 1% probabilidade; * significativo ao nível de 5% probabilidade; GL - número de graus de liberdade; CV - Coeficiente de Variação (%).

Para a perda de turgescência foliar (Figura 1.A), observou-se um decréscimo linear em função das lâminas de irrigação na ausência de Si, com uma redução de 0,62% por incremento unitário da lâmina. A menor PTF foi de 4% na lâmina correspondente a 100% da evapotranspiração da cultura (ETc). Com a aplicação de Si, a PTF também seguiu um padrão linear descendente, mas com uma redução mais acentuada de 1,04% por incremento unitário da lâmina de irrigação. Segundo Melo et al. (2018), o déficit hídrico pode induzir um aumento na produção de espécies reativas de oxigênio (ROS), que afetam especialmente a etapa fotoquímica da fotossíntese, provocando alterações significativas nos mecanismos de crescimento das plantas. Nesse sentido, o Si tem um papel de grande importância, demostrando potencial para atenuar os efeitos da deficiência hídrica, o que consequentemente promove melhor integridade das membranas (SILVA et al., 2020).

O déficit de saturação hídrica (Figura 1.B) mostrou uma tendência linear decrescente em relação às lâminas de irrigação, tanto na ausência quanto na presença de adubação com Si. Observou-se uma diminuição de 0,28% e 0,42% no déficit de saturação hídrica por cada incremento unitário da lâmina de irrigação para plantas sem e com Si, respectivamente. Os menores valores foram de 5,40% para as plantas sem silício e 2,77% para as plantas com silício, ambos registrados na lâmina correspondente a 100% da ETc. Isso pode ser explicado pelo fato do silício (Si), na forma de ácido monossilícico (H₄SiO₄), quando depositado nas folhas das plantas, forma uma camada protetora sobre os poros estomáticos e na cutícula foliar. Essa deposição de silício atua como uma barreira física, reduzindo a perda de água por transpiração e fortalecendo a cutícula das folhas (LUYCKX et al., 2017). Como resultado, a planta apresenta um menor déficit de saturação hídrica, mantendo uma maior eficiência na retenção de água e melhorando sua capacidade de tolerar condições de estresse hídrico.

Figura 1. Perda de turgescência foliar e déficit de saturação hídrica em plantas de melancieira cv. Crimson Sweet sob lâminas de irrigação e adubação silicatada. Catolé do Rocha, PB, 2023.

CONCLUSÕES

A lâmina de irrigação de 100% da evapotranspiração da cultura (ETc) foi a mais eficaz para manter a turgescência e minimizar o efeito do déficit hídrico. A aplicação de silício demonstrou uma redução na perda de turgescência foliar e no déficit de saturação hídrica, melhorando a integridade das membranas e a eficiência na retenção de água em plantas de melancieira cv. Crimson Sweet.

REFERÊNCIAS

^{**} Significativo a 1% pelo teste F.

- AHSAN, M.; VALIPOUR, M.; NAWAZ, F.; RAHEEL, M.; ABBAS, H. T.; SAJID, M.; MANAN, A.; KANWAL, S.; MAHMOUND, E. A.; CASINI, R.; ELANSARY, H. O.; RADICETTI, E.; ZULFIQAR, H. Evaluation of silicon supplementation for drought stress under water-deficit conditions: an application of sustainable agriculture. Agronomy, v. 13, n. 2, p. 599, 2023.
- ALI, N.; RÉTHORÉ, E.; YVIN, J. C.; HOSSEINI, S. A. The regulatory role of silicon in mitigating plant nutritional stresses. Plants, v. 9, n. 12, p. 1779, 2020.
- ALLEN, R. G.; PEREIRA, L. S.; RAES, D.; SMITH, M. Guidelines for computing crop water requirements. Rome: FAO, v. 56, n. 2, p. 300-310, 1998.
- BHAT, J. A.; SHIVARAJ, S. M.; SINGH, P.; NAVADAGI, D. B.; TRIPATHI, D. K.; DASH, P. K.; SOLANKE, A. U.; SONAH, H.; DESHMUKH, R. Role of silicon in mitigation of heavy metal stresses in crop plants. Plants, v. 8, n. 3, p. 71, 2019.
- CAIRO, P. A. R. Relações hídricas de plantas. Vitória da Conquista: UESB, p. 32, 1995.
- COSKUN, D.; DESHMUKH, R.; SONAH, H.; MENZIES, J. G.; REYNOLDS, O.; MA, J. F.; KRONZUCKER, H. J.; KRONZ BÉLANGER, R. R. In defence of the selective transport and role of silicon in plants. The New Phytologist, v. 223, n. 2, p. 514-516, 2019.
- DIAS, R.; SANTOS, J. S. Panorama nacional da produção de melancia. Campo & Negócios Hortifruti. Janeiro, pág. 44-48, 2019.
- EMBRAPA Empresa Brasileira de Pesquisa Agropecuária. Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa Solos. v. 3, p. 353, 2018.
- FABIAN, F. M.; SANTOS, B. M.; HOJO, E. T. D. Caracterização de melancias cv. Crimson Sweet na cidade de santa lúcia-paraná. Anais do City Farm, v. 1, n. 1, 2022.
- LUYCKX, M.; HAUSMAN, J. F.; LUTTS, S.; GUERRIERO, G. Silicon and plants: current knowledge and technological perspectives. Frontiers in plant science, v. 8, p. 411, 2017.
- MELO, A. S.; SILVA, A. R. F.; DUTRA, A. F.; DUTRA, W. F.; SÁ, F. D. S.; ROCHA, M. D. M. Crescimento e pigmentos cloroplastídicos de genótipos de feijão vigna sob déficit hídrico. Revista Brasileira de Agricultura Irrigada, v. 12, p. 2579-2591, 2018.
- MESQUITA, E. F.; DE OLIVEIRA MESQUITA, F.; DA SILVA SOUSA, C.; COSTA, J. P.; DINIZ, L. L. G. D. Q.; DA SILVA SOARES, V. C.; TARGINO, F. N.; JALES, DM. V. D.; NETO, J. F. B.; ROCHA, J. L. A.; SOUTO, A. G., L. Silício e adubação orgânica sobre os atributos físico-químicos de frutos de maracujá-amarelo no semiárido Brasil. Revista Brasileira de Geografia Física, v. 17, n. 1, p. 100-116, 2024.
- MESQUITA, E. F.; DE OLIVEIRA MESQUITA, F.; DA SILVA SOUSA, C.; DA SILVA FERREIRA, D.; ROCHA, J. L. A.; CAVALCANTE, L. F. Water stress mitigation by silicon in sweet-potato. Revista Ibero-Americana de Ciências Ambientais, v. 12, n. 7, p. 363-376, 2021.
- PRACIANO, A. C.; GORAYEB, A.; MONTEIRO, L. de A. Estudo de viabilidade do uso de energia eólica para irrigação da bananicultura do Ceará. Revista Brasileira de Agricultura Irrigada, v.13, n.5, p. 3691 3702, Fortaleza, CE, 2019.
- SILVA, D. C. D.; MELO, A. S. D.; MELO, Y. L.; ANDRADE, W. L. D.; LIMA, L. M. D.; SANTOS, A. R. Aplicação foliar de silício atenua os efeitos da supressão hídrica em cultivares de feijão-caupi. Ciência e Agrotecnologia, v. 43, p. e023019, 2020.