TRATAMENTO DE EFLUENTE DE ABATEDOURO AVÍCOLA PELO USO DO PROCESSO FOTO-FENTON

Poultry slaughterhouse effluent treatment by the photo-Fenton process

Resumo:

Foi realizado o estudo da eficácia do Processo foto-Fenton na redução da Demanda Química de Oxigênio, DQO, de um efluente de abatedouro avícola, cujo valor inicial era 26.487 mg/L. O experimento teve como variáveis a concentração de peróxido de hidrogênio e de íons ferrosos; e como variável resposta a redução da DQO. Concluiuse que à medida que a concentração de íons ferrosos aumentou, a eficiência do processo foi maior; ao passo que à medida que a quantidade de peróxido de hidrogênio aumentou, a eficiência do processo diminuiu. Foi observada uma redução de 89,5% da DQO. Em seguida foi realizado um estudo cinético baseado na degradação da DQO ao longo do tempo para determinar os parâmetros da cinética oxidativa, do tipo $d[DQO]/dt = -k[H_2O_2]^m[DQO]^n$. Obteve-se um modelo cinético de oxidação de segunda ordem do tipo d[DQO]/dt = $k[DQO]^2$, no qual o valor de $k = (4.1 \pm 0.4) \times 10^{-5} L/mg.min.$

Abstract:

It was carried out a study of the efficacy of the Photo-Fenton Process in reducing the chemical oxygen demand (COD) of a poultry slaughterhouse effluent, which initial COD was 26,500 mg/L. The experiment had as variables the concentration of hydrogen peroxide and ferrous ions; and as a response variable the reduction of COD. It was concluded that as the concentration of ferrous ions increased, the efficiency of the process was higher; while as the amount of hydrogen peroxide increased, the process efficiency decreased. A reduction of 89.5% of the COD was observed when compared to the initial COD. Then, a kinetic study was performed based on COD degradation over time to determine the parameters of the oxidative kinetics, type $d[COD]/dt = -k[H_2O_2]^m[COD]^n$. A second-order kinetic oxidation model of type d[COD]/dt = -k [COD]² was obtained, in which the value of $k = (4.1 \pm 0.4) \times 10^{-5} L/mg$. min.

Nayá Paiva Pereira de Almeida Leitão¹, Fernando Ferreira da Silva Dias¹, André Felipe de Melo Sales Santos¹. Thibério Pinho Costa Souza¹, Jorge Vinicius Fernandes Lima Cavalcanti²

¹Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Garanhuns; ²Universidade Federal de Pernambuco. E-mail: nayaleitao@gmail.com

Contato principal

Nayá Paiva Pereira de Almeida Leitão 1

Palavras chave: Oxidação Avançada, Efluente Agroindustrial, Cinética Química

Keywords: Advanced Oxidation, Agro-Industrial Wastewater, Chemical Kinetics

INTRODUÇÃO

O processo de abate de aves gera aproximadamente 15 litros de água residual por cabeça. Segundo Scarassati et al. (2003), o efluente de abatedouros avícolas tem como características: demanda bioquímica de oxigênio (DBO) elevada (entre 800 - 32.000 mg/L), grande quantidade de óleos e graxas, material flotável (gordura), sólidos sedimentáveis, suspensos e nitrogênio orgânico em alta concentração, além da presença de sólidos grosseiros e microorganismos patogênicos, o que torna o tratamento deste efluente de suma importância antes de sua liberação no meio ambiente.

O maior empecilho no tratamento deste tipo de efluente é a presença de gordura, que pode reduzir a eficiência de processos de tratamentos biológicos. Por isso, muitas vezes, faz-se necessário o estudo de técnicas mais energéticas para a sua remediação. O processo Fenton é um Processo Oxidativo Avançado (POA) que consiste na reação de oxidação realizada por meio da mistura de peróxidos com íons ferrosos (Fe²⁺). Neste processo, o ferro, na forma ferrosa (Fe²⁺) ou férrica (Fe³⁺), atua na catálise do peróxido de hidrogênio, agindo como acelerador da reação. A mistura de H₂O₂/Fe²⁺, em meio ácido, resulta na formação de radicais hidroxila (•OH). A matéria orgânica (RH) é decomposta pela ação deste radical, que retira hidrogênio das ligações C-H, N-H e O-H. transformando-a em um radical intermediário (R.). Este, posteriormente, convertido em moléculas menores, até ácidos orgânicos, CO₂ e H₂O (WANG e XU, 2012).

O processo Fenton pode ocorrer sob influência de radiação ou na ausência dela. Quando o íon ferroso (Fe²⁺) interage com o peróxido de hidrogênio (H2O2) é formado o radical hidroxila (•OH), e íons férricos (Fe³⁺), sendo este o processo ideal. Porém, o íon férrico, por sua vez, ou o excesso de peróxido de hidrogênio no meio reativo, pode modificar a reação de Fenton e encerrar em outro radical oxidante, o hidroperoxila (HOO•), cujo potencial de oxidação é inferior ao da hidroxila (1,42 V e 2,80 V, respectivamente). O que influenciaria negativamente na eficiência do processo (LOURES et al, 2013). Assim, para que a produção de hidroxila seja contínua, é necessário que o Fe³⁺ seja reduzido a Fe²⁺. E isso pode acontecer através da inserção de radiação ultravioleta, concluindo assim o processo chamado foto-Fenton (KRZEMINSKA et al., 2015; WANG e XU, 2012).

Os fatores que podem determinar a eficiência deste processo são o pH da solução, carga orgânica e inorgânica presente no efluente, a quantidade de íons férricos e ferrosos no meio e a concentração de peróxido de (LOURES al, hidrogênio utilizada et KRZEMINSKA et al., 2015). A forma iônica do ferro na reação dependerá do pH do meio, cuja faixa ótima varia entre 2,5 e 3,0 (eventualmente até 5,0). Quanto ao peróxido de hidrogênio, se a concentração inicial for alta, o rendimento do processo será elevado no início da reação, mas posteriormente irá diminuir, porque em grandes concentrações os radicais hidroxila passam a

reagir com o H₂O₂, resultando na formação de radicais HOO• e na redução da quantidade de •OH disponível no meio (LOURES et al, 2013; WANG e XU, 2012).

De uma forma geral, a reação que foi processada neste estudo está sumarizada na Eq. 1.

$$H_2O_2$$
 + Compostos Orgânicos/Inorgânicos (DQO) + $(Fe^{2+})_{catalisador} \rightarrow Produtos$ (1)

Desta feita, o modelo cinético homogêneo introduzido neste experimento será baseado na degradação temporal da demanda química de oxigênio, de acordo com a Eq. 2.

$$d[DQO]/dt = -k [DQO_{inicial}]^n [H_2O_{2 inicial}]^m$$
 (2)

Sendo este modelo teórico, já que há dois reagentes no sistema, o peróxido de hidrogênio, e os compostos orgânicos (em sua grande maioria), quantificados em termos de DQO. Além dos íons ferrosos, que, como catalisador, é ausente do modelo cinético (LEVENSPIEL, 1999). Os parâmetros n e m - são respectivamente a ordem da reação em relação à DQO inicial e à concentração inicial de peróxido de hidrogênio, determinados experimentalmente. Já o parâmetro k - é constante cinética da reação, também determinada experimentalmente.

MATERIAIS E MÉTODOS

A amostra de água residual de abatedouro avícola foi coletada em uma empresa na zona rural do município de São João, interior de Pernambuco. A amostra não tratada foi filtrada para que os resíduos sólidos fossem retirados e, então, foi realizada a análise colorimétrica da DQO do efluente. Este método consiste em oxidar a matéria orgânica com uma solução sulfocrômica e em seguida analisar o cromo trivalente formado por espectroscopia UV (em 620 nm), de acordo com a metodologia descrita por Salazar et al., 2009. Para a calibração da DQO em função da absorbância do Cr3+, de acordo com a Lei de Lambert-Beer, foram utilizadas soluções padrão de biftalato de potássio com [DQO] = 150 a 1500 mg/L.

Com a DQO inicial do efluente quantificada em 26.487 mg/L, pôde-se fazer um planejamento experimental 32, descrito na Tabela 1. Tendo como nível (-1) a quantidade estequiométrica de oxigênio reativo (em termos de peróxido de hidrogênio) necessário para a completa degradação da carga contaminante, (+1) o dobro desta quantidade, e o ponto central (0) como a média destes dois valores. Já a concentração inicial de íons ferrosos foi determinada fazendo uma aproximação a outras referências, conforme descrito por Cavalcanti, 2012.

Foram preparados nove ensaios, em duplicata, de acordo com o planejamento fatorial descrito na Tabela 1. Em todos os experimentos o volume do efluente a ser tratado foi de 50 mL, inseridos em béqueres de 500 mL. Nestes experimentos foram adicionados diferentes volumes de uma solução 17,40 mol/L de peróxido de hidrogênio e diferentes volumes de uma solução 0,49 mol/L de sulfato heptahidratado ferro $(FeSO_4 \cdot 7H_2O),$ convenientemente diluídas até convergirem concentrações descritas na Tabela 1. Houve a correção do pH até 3,0, com gotejamento de H₂SO₄ P.A., utilizando-se um pHmetro digital. As amostras foram expostas ao sol por quatro horas, em horário de pico, e ao final da reação foi utilizado o goteiamento de uma solução de NaOH (1 mol/L) para neutralizar o meio e consequentemente terminar a reação de Fenton e precipitar os íons ferrosos. As amostras foram filtradas em papel filtro qualitativo, retirando-se o precipitado de íons ferrosos. Em seguida, foi realizada a análise da DQO do efluente tratado, pelo método colorimétrico.

Tabela 1. Planejamento experimental do estudo.

T7 1/ 1	Níveis				
Variáveis	-1	0	+1		
[H ₂ O ₂] (mol/L)	1,360	1,870	2,720		
$[Fe^{2+}]$ (mol/L)	0,045	0,064	0,082		

O resultado do planejamento foi expresso como uma função da DOO final variando com as concentrações iniciais de peróxido de hidrogênio e íons ferrosos. Foi realizado um estudo estatístico, baseado na análise de variância (ANOVA), pelo método dos mínimos quadrados, para validar esta função no domínio do trabalho, $[DQO]_{final} = f([H_2O_2]_{inicial}, [Fe^{2+}]_{inicial}).$

Para a realização do estudo cinético, descrito pela Eq. 2, pode-se fazer uma aproximação entre a derivada da DQO em respeito ao tempo, com a variação da DQO no tempo, do tipo $d[DQO]/dt \cong \Delta[DQO]/\Delta t_{t\to 0}$. Ou seja, nos instantes iniciais do processo oxidativo, quando a derivada assume valores máximos, ou máximas velocidades instantâneas (LEVENSPIEL, 1999). Desta forma a Eq. 2 sofre uma adaptação, tornando-se a Eq. 3.

$$\Delta[DQO]/\Delta t_{t\to 0} = -k [DQO_{inicial}]^n [H_2O_{2 inicial}]^m$$
 (3)

Sendo a variação da DQO no tempo (lado esquerdo da Eq. 3) determinada experimentalmente, e as concentrações iniciais de peróxido de hidrogênio e DQO do efluente (lado direito da Eq. 3) inseridas de acordo com a Tabela 2.

Tabela 2. Ensaios para a realização do estudo cinético (pH = 3,0; $[Fe^{2+}] = 0.047 \text{ mol/L}$.

Ensaios	DQO inicial (mg/L)	[H ₂ O ₂] inicial (mol/L)		
1	2928,7	0,180		
2	2928,7	0,090		
3	1471,7	0,090		

Assim, ao dividir os resultados entre os ensajos 1 e 2, foi possível calcular a ordem da reação em relação ao H₂O₂ (m), de acordo com a Eq. 4. E ao dividir os resultados entre os ensaios 2 e 3, foi possível determinar a ordem da reação em respeito à DQO (n), de acordo com a Eq. 5.

$$\begin{split} \{\Delta[DQO]/\Delta t_{t\rightarrow 0}\}_{ensaio1}/\{\Delta[DQO]/\Delta t_{t\rightarrow 0}\}_{ensaio2} &= (0.180)^m \,/\,\\ (0.090)^m &= 2^m \end{split} \tag{4}$$

$$\begin{split} \{\Delta[DQO]/\Delta t_{t\rightarrow 0}\}_{ensaio2}/\{\Delta[DQO]/\Delta t_{t\rightarrow 0}\}_{ensaio3} &= (2928,7)^n / (1471,7)^n \cong 2^n \end{split} \label{eq:delta_constraint}$$

Calculada as ordens n e m, pôde-se retornar à Eq. 2 para determinar a constante cinética, k.

RESULTADOS E DISCUSSÃO

Foi realizada uma curva de calibração entre amostras padrão de biftalato de potássio (KBH), contendo DQOs preestabelecidas (entre 150 e 1500 mg/L), e as respectivas absorbâncias do cromo III remanescente, em um comprimento de onda 620 nm. A curva de calibração encerrou em uma função linear, descrita pela Eq. 6 e ilustrada na Figura 1.

$$[DQO] = 2574,1 A$$
 (6)

Sendo A – absorbância das soluções sulfocrômicas após a digestão da matéria orgânica. Esta função linear, com coeficiente de correlação 0,998, foi utilizada para determinar as DQO das amostras reais, antes e depois do processo oxidativo. A DQO do efluente real indicou um valor de 26.487,49 ± 797,97 mg/L. E neste efluente, foi realizado um estudo pautado em um planejamento experimental, descrito na Tabela 1, com resultados apresentados na Tabela 3. Destacando-se que o melhor resultado finalizou em uma DQO igual a 2.780,03 ± 102,96 mg/L. Ou seja, aproximadamente 89,51% de conversão da matéria orgânica.

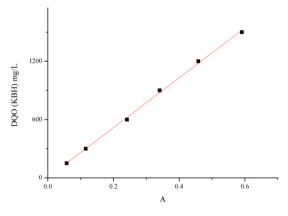


Figura 1. Calibração do método colorimétrico para DQO

Tabela 3. DQO final dos ensaios experimentais (DQO inicial do efluente = 26487 mg/L).

Experimentos	Concentrações dos Reagento	Iniciais es da	[DQO] _{final} do efluente (mg/L)
	Reação de (mol/L)	Fenton	(g /2)
	[H ₂ O ₂]	[Fe ²⁺]	
1	1,360 (-1)	0,045	5096,72 ± 463,34
		(-1)	
2	1,360 (-1)	0,064	4170,04 ± 51,48
		(0)	
3	1,360 (-1)	0,082	$2780,03 \pm 102,96$
		(+1)	
4	1,870 (0)	0,045	$3758,19 \pm 51,48$
		(-1)	
5	1,870 (0)	0,064	3397,81 ±205,93
		(0)	
6	1,870 (0)	0,082	$3346,33 \pm 51,48$
		(+1)	
7	2,310 (+1)	0,045	$3294,85 \pm 12,87$
		(-1)	
8	2,310 (+1)	0,064	$3346,33 \pm 51,48$
		(0)	
9	2,310 (+1)	0,082	$3191,88 \pm 12,87$
		(+1)	

De uma forma geral, mantendo-se constante a concentração inicial de peróxido de hidrogênio, o aumento da concentração de íons ferrosos diminui o valor da DQO, ratificando assim a sua importância como catalisador da reação de Fenton e aumentando a eficiência do processo. Já o aumento da concentração individual de peróxido de hidrogênio não significou de forma tão potencial um aporte à diminuição da DQO, indicando que podem ter ocorrido reações laterais, indesejadas, como a formação de radicais hidroperoxila, consumindo o próprio peróxido de hidrogênio.

Um estudo através de uma ANOVA, baseado no método dos mínimos quadrados, conseguiu compilar os dados experimentais indicados na Tabela 3 em um modelo matemático descrito pela Eq. 7. Este correlaciona a DQO final com as concentrações iniciais do peróxido de hidrogênio e íons ferrosos, e foi desenvolvido com uso do software Statistica Statsoft 7.0.

$$y = 3643,78 - 875,19X_1 - 1081,12X_2 + 1312,79X_1X_2 + 501,95X_1^2X_2$$
 (7)

Onde y – representa a DQO final do efluente (mg/L), X_1 – representa a concentração inicial de peróxido de hidrogênio, e X_2 – representa a concentração inicial de íons ferrosos. Sendo X_1 e X_2 = { $X \in R/-1 \le X \le +1$ }. Em que -1 representa a menor concentração, 0 representa a concentração média e +1 a máxima concentração inicial. Ou seja, os níveis mínimos, intermediários e máximos de cada fator. A função representada pela Eq. 7 pode ser visualizada como uma curva de contorno, conforme apresenta a Figura 2, indicando as DQO finais em função das concentrações iniciais de peróxido de hidrogênio e íons ferrosos. Já o efeito das variáveis do processo está ilustrado na Figura 3, que representa o gráfico de Pareto,

com 95% de nível de confiança. Os resultados indicam que as duas variáveis independentes, concentração de peróxido de hidrogênio, representada por X_1 , na sua forma linear (L) ou quadrática (Q), e concentração de íons ferrosos, representada por X_2 , na sua forma linear (L) ou quadrática (Q), foram significativas à diminuição da DQO e que individualmente o crescimento de ambas faz diminuir a concentração de matéria orgânica contida no efluente.



Figura 2. Superfície de contorno [DQO] = $f([H_2O_2], [Fe^{2+}])$.

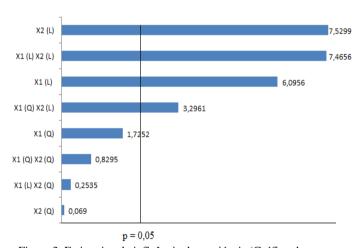


Figura 3. Estimativa da influência das variáveis (Gráfico de Pareto – valores absolutos).

Os melhores resultados foram correlatos aos experimentos -1/+1 (2780,03 \pm 102,96 mg/L), 0/+1 (3346,33 \pm 51,48 mg/L) e +1/+1 (3191,88 \pm 12,87 mg/L). Com o intuito de confirmar que o ponto ótimo do experimento está próximo do nível -1/+1, ou seja, $[H_2O_2] = 1,360$ mol/L e $[Fe^{2+}] = 0,082$ mol/L, o planejamento foi expandido, diminuindose ainda mais a concentração inicial de H_2O_2 , para 1,020 mol/L (-2/+1) e 0,680 mol/L (-3/+1), mas mantendo-se a concentração de íons ferrosos 0,082 mol/L (+1). Estes novos resultados indicaram uma DQO igual a 9.163,79 \pm

205,93 mg/L e 11.429,01 ± 308,89 mg/L, respectivamente, conforme apresenta a Figura 4. Estes aumentos nos resultados da DQO ilustraram que não valeria a pena diminuir a concentração de H₂O₂ além do nível -1 (1,360 mol/L), sendo este, portanto, um ponto operacional de trabalho já bastante adequado.

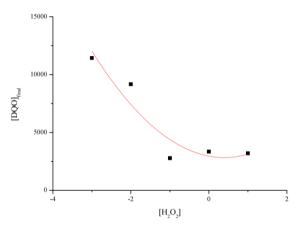


Figura 4. Ponto ótimo de trabalho para concentração de H₂O₂

Finalmente, a cinética química foi desenvolvida. Os resultados da variação da DQO em função do tempo estão descritos na Tabela 4, sempre reportados à Tabela 2 e às Eqs. 4 e 5.

Dividindo-se os resultados de $\{\Delta[DQO]/\Delta t\}_{ensaio1}$ por $\{\Delta[DQO]/\Delta t\}_{ensaio2}$, correlacionando com a Eq. 4, obtevese m = -0.01 ± 0.11 , convenientemente adotado para 0. Dividindo-se os resultados de $\{\Delta[DQO]/\Delta t\}_{ensaio2}$ por

 $\{\Delta[DQO]/\Delta t\}_{ensaio3}$, correlacionando com a Eq. 5, obtevese n = 1.81 ± 0.21 , convenientemente adotado para 2. Encerrando assim uma cinética de segunda ordem, do tipo, $d[DQO]/dt = -k [DQO]^2$. Com solução analítica dada pela Eq. 8, após a separação das $\int d[DOO]/[DOO]^2 = \int -kdt$, ilustrada na Figura 5. $(1/[DQO]) - (1/[DQO]_0) = kt$ (8)

Da Figura 5, o coeficiente de correlação foi 0,808, o que indica um ajuste razoável do modelo, porém justificado pela complexidade inerente à cinética química de um processo catalítico. Dessa forma, o ajuste linear forneceu como coeficiente angular a constante cinética da reação, k = $(4,1 \pm 0,4)$ x 10^{-5} L/mg.min, conforme pôde ser observado pela Figura 5.

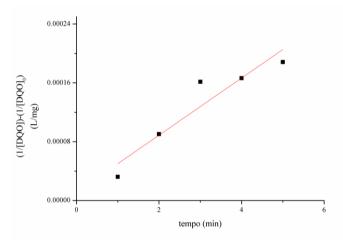


Figura 5. Linearização do modelo cinético de segunda ordem

Tabela 4. Estudo cinético oxidativo

Ensaio 1 (Tabela 2)		Ensaio 2 (Tabela 2)		Ensaio 3 (Tabela 2)				
t (min)	[DQO]	$\Delta[DQO]/\Delta t$	t (min)	[DQO]	$\Delta[DQO]/\Delta t$	t (min)	[DQO]	$\Delta[DQO]/\Delta t$
1	2083,623	845,131	1	2136,109	792,644	1	1148,942	322,793
2	1737,050	595,852	2	1487,297	720,728	2	1164,247	153,744
3	1448,284	493,490	3	1532,122	465,544	3	1093,238	126,166
4	1472,352	364,100	4	1521,387	351,842	4	1077,355	98,595
5	1412,955	303,160	5	1424,502	300,850	5	1042,248	85,897

CONCLUSÃO

As variáveis independentes mostraram-se significativas na redução da DQO do efluente à medida que suas concentrações aumentaram. Ressaltando-se que a variável [Fe²⁺] mostrou-se mais influente na redução quando comparada à variável [H₂O₂]. O ensaio que apresentou a melhor resposta foi o (-1) do H₂O₂, 1,36 mol/L, e o (+1) do Fe²⁺, 0,082 mol/L, encerrando em uma DQO final de $2.780,03 \pm 102,96$ mg/L, que quando comparada com a DOO inicial apresentou uma redução de 89,50%. Quanto ao estudo cinético, pôde-se concluir que os parâmetros oxidativos em relação à variação temporal da DQO e do H_2O_2 foram, respectivemente, $n = 1.81 \pm 0.21$ e m = 0.01± 0,11, indicando que a reação pode ser considerada de

segunda ordem em relação à variação de DQO e de ordem zero em relação à variação de H₂O₂. Assim, obteve-se um modelo cinético de oxidação de segunda ordem do tipo d[DQO]/dt=-k[DQO]², no qual o valor de k foi igual a $(4.1 \pm 0.4) \times 10^{-5} \text{ L/mg.min.}$

REFERÊNCIAS BIBLIOGRÁFICAS

CAVALCANTI, J. V. F. L. Tratamento por Oxidação Avançada de Solo Argiloso Contaminado por Derivados do Petróleo. Recife: UFPE, 2012. 61p.

KRZEMINSKA, D.; NECZAJ, E.; BOROWSKI, G. Advanced Oxidation Processes for Food Industrial Wastewater Decontamination. Journal of Ecological **Engineering,** v.16, n.2, p.61-71, 2015.

LEVENSPIEL, O. Chemical Reaction Engineering. 3 ed. New York: John Wiley & Sons, 1999, 62p.

LOURES, C. C. A.; ALCÂNTARA, M. A. K.; IZÁRIO FILHO, H. J.: TEIXEIRA, A. C. S. C.: SILVA, F. T.: PAIVA, T. C. B.; SAMANAMUD, G. R. L. Advanced Oxidative Degradation Processes: Fundamentals and **Applications. International Review of Chemical** Engineering (I.RE.CH.E.), v.5, n.2, p.102-120, 2013.

SALAZAR, R. F. S.; PEIXOTO, A. L. C.; IZÁRIO FILHO, H. J. Avaliação da Metodologia 5220 D. Closed Reflux, Colorimetric Method para Determinação da Demanda Química de Oxigênio (DQO) em Efluente Lácteo. Analytica, n.44, p.55-61, 2009.

SCARASSATI, D.; CARVALHO, R. F.; DELGADO, V. L.; CONEGLIAN, C. M. R.; BRITO, N. N.; TONSO, S.; DRAGONI SOBRINHO, G.; PELEGRINI, R. Tratamento de Efluentes de Matadouros e Frigoríficos. In: Fórum de Estudos Contábeis, 3, 2003, Rio Claro.

WANG, J. L.; XU, L. J. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application, Critical Reviews in Environmental **Science and Technology**, v.42, n.3, p.251-325, 2012.