Physical-chemical soil of agroforestry system and
areas of natural regeneration in southeastern Pará, Brazil
Físico-química do solo de sistema
agroflorestal e áreas de regeneração natural no sudeste do Pará
Suelo fisicoquímico del sistema agroforestal y áreas
de regeneración natural en el sureste de Pará, Brasil
Emanoelen
Bitencourt e Bitencourt1;
Juliana Cardoso Ferreira2;
Kelvis Nunes da Silva3;
Glauber Epifânio Loureiro4;
Gleidson Marques Pereira5
1Undergraduate
student in Environmental and Sanitary Engineering, State University of Pará, Marabá, +5591991040415, e-mail: manuhbitencourt13@outlook.com; 2Undergraduate student in
Environmental and Sanitary Engineering, State University of Pará, Marabá, e-mail: juuhferreira2199@gmail.com; 3Undergraduate student in
Environmental and Sanitary Engineering, State University of Pará, Marabá, e-mail: kelvisnsilva@gmail.com; 4Master in Civil Engineering,
Federal University of Pará, Belém. Assistant
Professor, State University of Pará, Marabá, e-mail: epfanio@uepa.br; 5Master in Agronomy, Federal
University of Ceará, Fortaleza. Assistant professor,
State University of Pará, Marabá, e-mail: eng.gleidson.uepa@gmail.com.
Recebido: 12/11/2019; Aprovado: 26/06/2020
Keywords:
Multivariate
analysis; Agroecosystem; Recovery.
Resumo: O solo é extremamente importante para a manutenção de um ecossistema
florestal, e os sistemas agroflorestais permitem consideráveis melhorias no
recurso. Com este trabalho objetivou-se realizar a caracterização
físico-química do solo em um sistema agroflorestal e áreas de regeneração
natural no sudeste do Pará. A área de estudo é o Projeto de Assentamento Nossa
Senhora do Perpétuo Socorro, no município de Nova Ipixuna, Pará, a qual foi dividida
em Sistema Agroflorestal com cinco anos de implantação e áreas de regeneração
natural com seis e dez anos, nas quais foram feitas quatro amostragens, com
três subamostras cada, na profundidade de 0-20 cm do
solo, para a realização das análises químicas e de textura do solo. Os dados
foram submetidos ao teste de normalidade e dos componentes principais, por meio
de programas computacionais. Sobre o teste de normalidade a distribuição de
probabilidade foi normal, quanto à análise de variância os tratamentos
submetidos não apresentaram diferença significativa para todas as variáveis
analisadas, e em relação à análise multivariada não se identificou a formação
de grupos. Portanto, houve homogeneidade entre as características
físico-químicas do sistema agroflorestal e as áreas de regeneração natural de
seis e dez anos.
Palavras-chave: Análise multivariada; Agroecossistema;
Recuperação.
Resumen: El suelo es extremadamente
importante para el mantenimiento
de un ecosistema forestal, y los sistemas agroforestales permiten mejoras considerables en el recurso. Este trabajo tuvo como objetivo llevar a cabo la caracterización físico-química del
suelo en un sistema agroforestal y áreas
de regeneración natural en el sureste de Pará. El área de estudio es el Proyecto
de Asentamiento Sosa de
Nossa Senhora do Perpétuo, en el
municipio de Nova Ipixuna, Pará, que se dividió en Sistema Agroforestal con cinco años de implantación y áreas de regeneración natural con seis y diez años, en
los que se realizaron cuatro muestreos, con tres submuestras
cada uno, a una profundidad de 0-20 cm del suelo, para llevar a cabo el análisis químico y de textura del
suelo. Los datos fueron sometidos a la prueba de normalidad y los componentes principales,
utilizando programas informáticos. En cuanto a la prueba
de normalidad, la distribución de probabilidad fue normal, ya que para el análisis de varianza, los tratamientos
presentados no mostraron diferencias significativas
para todas las variables analizadas, y en relación con el
análisis multivariante, no
se identificó la formación de grupos. Por lo
tanto, hubo homogeneidad
entre las características físicas y químicas del sistema agroforestal y las áreas de regeneración natural
de seis y diez años.
Palabras clave: Análisis multivariante; Agroecosistema; Recuperación.
INTRODUCTION
The balance of forest
ecological systems depends on the management adopted for plant resources,
therefore it is essential to understand the natural and anthropic processes (eg.: nutrient cycling and vegetation removal), and
variables of influence on these resources, such as humidity, precipitation and
heat. One of the most important constituents of the ecological system, tied to
the biogeochemical cycles of the entire ecosystem is the soil, since the
degradation of litter occurs in it, composed by leaves, branches and fruits,
which are essential in the cycling of nutrients, which are released by the
action of decomposers and later extracted by plants. Nutrient cycling is
relevant mainly in soils with high weathering, where there are reduced
nutrients, such as the amazonian (INKOTTE et al.,
2019).
In order to achieve this
balance in ecosystems, agroecological systems are emerging, such as the
Agroforestry System - SAF. These models, regarding the use of the soil,
associate woody perennial species and agricultural and/or animal cultures,
constituting an environment favored by the similarity of the processes to what
naturally happens, like the succession of matter and energy converted between
beings through food and dependence on each other, resulting in a good cycling
of nutrients. This cycling results from the large production of biomass,
providing recovery of degraded areas by improving the physical (texture,
porosity, permeability) and chemical (pH, nutrient content, organic matter)
properties of the soil (MASCARENHAS et al., 2017; ARAUJO et al., 2018).
In this perspective, the
different properties of the soil must be analyzed to verify progress in the
restoration of soil attributes. However, this recovery of soil quality depends
on the variability of the species, since greater diversity helps in the
regeneration of soil properties. Furthermore, the determination of the
physical-chemical condition of the soil contributes to a more adequate planning
of future use and occupation of the same, because through the information of
porosity, pH and nutrient content, for example, it is possible to define
actions of short (use of calcium and magnesium in the correction of soil
acidity), medium (introduction of SAFs) and long term (improved management of
poultry), for the recovery of areas (BAKONYI, 2012; STUMPF et al., 2016; NOVAK
et al., 2018).
One of the techniques used to
explain about the variance and covariance of an eventual vector constituted of
a set of eventual variables, it is the Principal Component Analysis - PCA,
method used in the grouping of variables according to the variation. The PCA,
according to Hongyu et al. (2015 p. 83) "it is a
statistical technique of multivariate analysis that linearly transforms an
original set of variables, initially correlated with each other, into a
substantially smaller set of uncorrelated variables that contains most of the
information from the original set". Still according to the authors cited,
these smaller assemblies are called the principal components, each of which
represents a linear association of all original variables.
The study aimed to
carry out the physical-chemical characterization of the soil in an agroforestry
system and areas of natural regeneration in the municipality of Nova Ipixuna, southeast of Pará, in order to verify the capacity
of the SAF regarding the recovery of areas, using the principal component
analysis technique for data analysis.
METHODS AND MATERIALS
The study area is located in
the Nossa Senhora do Perpétuo
Socorro Settlement Project, in the municipality of Nova Ipixuna
/ PA, bordering the municipalities of Itupiranga, Jacundá and Marabá at latitude 5
° 17'57 ”(S) and longitude 49 ° 08'58 ”(O) (Figure 1).
Figure 1. Location of the
Nossa Senhora do Perpétuo Socorro Settlement Project,
Nova Ipixuna, Pará.
According to the Koppen classification, the region has a monsoon climate
with extremely hot winter and very rainy summer, the average annual temperature
is 26.9 ºC and the average annual rainfall is 2,079 mm, with difference between
the driest and wettest month of 377 mm (ALVARES et al., 2013). As for the soil,
it was classified as a Dystrophic Red-Yellow Latosol, according to Teixeira et
al. (2017).
In the Settlement Project,
object of the study, the research areas were divided into treatment I, II and
III. Treatment I is the Agroforestry System (SAF) with
five years of implantation, a place with 9,473 m2, which can be
considered a dynamic and more biodiverse unit, where various cultures are
introduced, such as cupuaçu, banana and açaí.
Treatment II comprises a
six-year natural regeneration area, with 17,884 m2, in which there
is ground cover by grasses, in addition to the secondary succession of tree
vegetation, typical of equatorial forests. Treatment III, an area of 27,469 m2,
is related to the natural regeneration area of ten years, in which
characteristics similar to treatment II are observed.
However, the vegetation is already at a more advanced stage of development
noted by the size of the trees.
Regarding the collections of
the topsoil, they were carried out in September 2018 and followed the
methodology of Filizola et al. (2006), of simple
random sampling, which avoids subjectivity in sampling and occurs with the
marking of a network or grid of points over the area. For each defined
treatment, four samples were sampled entirely randomly, with three subsamples
each at a depth of 0-20 cm from the soil in the three treatment areas (I, II
and III) (Figure 2).
Figure 2. Collection points
in the three treatment areas in the Nossa Senhora do Perpétuo Socorro Settlement Project, Nova Ipixuna, Pará.
The collected samples were submitted to laboratory procedures to
determine the chemical properties and texture of the soil, by the methods
described by Teixeira et al. (2017). The chemical attributes analyzed were:
active acidity (pH in water), organic matter (MO), phosphorus (available P), potassium
(K), aluminum (Al2+), calcium (Ca2+), magnesium (Mg2+), potential acidity (H
+ Al), sulfur (S), base saturation (V%) and cation exchange capacity (effective
CEC). And the soil texture, obtained by sifting, was expressed in clay, silt
and sand (TEIXEIRA et al., 2017).
The data were submitted to the normality test, by the Shapiro-Wilk
method, according to Shapiro and Wilk (1965), and standardized (Equation 01) so
that the new variables (Z) are equivalent, they were subsequently submitted to
the Principal Component Analysis (PCA), to associate the chemical variables
with the samples and locations, in order to indicate the behavior of fertility
in each treatment and the correlation between them.
Z = (X - µ) /
σ (01)
Where: Z = Standardized variable; X = Non-standardized variable (raw
data); µ = X mean; σ = Standard deviation of X.
In addition, Descriptive Statistics, Analysis of Variance were also
performed to compare means (significance equal to 5%) and Multivariate Analysis
was performed with the aid of the software STATISTICA version 7.0
(STATSOFT, 2004).
RESULTS AND DISCUSSION
The normality test applied to the variables showed a normal probability
distribution, indicating normal data distribution. Regarding the
physicochemical of the soil, the treatments evaluated do not differ (p
<0.05) in any of the analyzed parameters. As for the mean values, treatment
III showed higher values for the variables of pH, MO, P, K, Ca2+, Mg2+,
S, V%, CEC and Clay, followed by treatment I (Table 1).
Similar concentrations of
macro and micronutrients may indicate that the interventions made by family
farming systems, even if carried out in a simplified manner with SAF’s
technology, did not cause high negative impacts on soil attributes. This is
because the occurrence of competitiveness, caused when different groups of
plants are combined in agroforestry systems, it can generate the facilitation
of essential elements for the life of the plants (JOSE et al., 2004). In addition,
the availability of these elements can indicate the health and the ability of
the soil to remain productive (DOLLINGER; JOSE, 2018).
Table 1. Descriptive Statistics and
Analysis of Variance of physical-chemical parameters in treatments at the Nossa Senhora do Perpétuo
Socorro Settlement Project, Nova Ipixuna, Pará. |
||||||
Variables |
Unit |
Treatment
I |
Treatment
II |
Treatment
III |
Significance (p ≤ 0.05) |
|
Means ±
SD |
Means ±
SD |
Means ±
SD |
||||
pH |
Water |
5.05 ±0.54 |
4.68 ±0.33 |
5.28 ±0.51 |
0.25 |
|
MO |
g/kg |
1.78 ±0.77 |
1.38 ±0.31 |
1.90 ±0.79 |
0.53 |
|
P |
mg/dm³ |
4.00 ±2.94 |
1.25 ±0.50 |
6.00 ±3.37 |
0.08 |
|
K |
55.00 ±26.46 |
40.00 ±11.55 |
65.00 ±19.15 |
0.26 |
||
Al2+ |
cmolc/dm³ |
0.70 ± 0.32 |
0.78 ±0.21 |
0.58 ±0.33 |
0.63 |
|
Ca2+ |
0.98 ±0.43 |
0.75 ±0.24 |
1.15 ±0.29 |
0.28 |
||
Mg2+ |
0.50 ±0.28 |
0.38 ±0.17 |
0.60 ±0.18 |
0.38 |
||
H+Al |
3.50 ±0.52 |
3.85 ±0.30 |
3.28 ±0.35 |
0.18 |
||
S |
1.40 ±0.58 |
1.23 ±0.40 |
1.90 ±0.52 |
0.20 |
||
V% |
% |
28.50 ±10.66 |
24.00 ±6.78 |
36.25 ±8.66 |
0.19 |
|
CEC |
cmolc/dm³ |
4.90 ±0.44 |
5.05 ±0.17 |
5.18 ±0.17 |
0.43 |
|
Clay |
% |
41.50 ±14.11 |
29.75 ±6.60 |
46.25 ±11.21 |
0.15 |
|
Silte |
31.25 ±2.50 |
39.25 ±13.99 |
33.25 ±2.36 |
0.40 |
||
Sand |
27.25 ±13.55 |
31.00 ±11.86 |
20.50 ±9.71 |
0.47 |
||
Treatment I: agroforestry system; Treatment II:
six-year natural regeneration area; Treatment III: ten-year natural regeneration
area; SD: standard deviation; pH: Hydrogenionic
potential; MO: organic matter; P: phosphorus; K: potassium; Al2+:
aluminum; Ca2+: calcium; Mg2+: magnesium; H + Al:
potential acidity; S: sulfur; V%: base saturation; CEC: cation exchange
capacity. |
The average amount of
phosphorus, for example, in the five-year agroforestry system, was close to
that of the ten-year natural regeneration area. This corroborates the fact that
the SAF does not cause major negative effects on the soil, and perhaps this
lower average value can be corrected with natural or chemical practices,
increasing the productive performance of the soil, since phosphorus is important
for plant metabolism, as it is a limiting nutrient for the production of
biomass in terrestrial areas, in natural forests (FISHER et al., 2012) and
forest plantations (TRUAX et al., 2012).
Regarding the amount of
organic matter, the values obtained in the five-year agroforestry system were
also similar to those in the area of natural
regeneration in ten years. In the ecosystem, the supply of organic material,
found in the superficial layer, indicates the accumulation of biomass
incorporated in the soil due to the greater number of species in the SAF.
Therefore, the application of SAF's makes it possible to improve the
physical-chemical properties of the soil, potentiating the fertility of the soil as a whole, and favoring the raising of productivity levels
in smallholder crops (XAVIER et al., 2012; SILVA et al., 2014).
Some previous studies have
also compared the physical-chemical attributes of the soil in different areas, Bertacchi et al. (2012) found in a study carried out in the
interior of São Paulo, that the physical and chemical characteristics of the
soil in regeneration areas of different ages had significant differences; Silva
et al. (2019) observed that the amount of macronutrients in the soil of the
planting systems (monoculture and SAF´s) differed; Rodrigues et al. (2016)
indicated a low level of soil fertility in a system of paricá
(S. parahyba var. Amazonicum)
x acacia (Pueraria phaseoloides). The results
described by the authors were different from those observed in this study.
For the analysis of principal
components, components 1 and 2 (CP1 and CP2) were enough to explain the total
variation, with a variation rate equal to 88.11%, with CP1 responsible for
77.36% and CP2 for 10.75%. CP1 was characterized by not presenting variables
with high discrimination power. However, in relation to CP2, the weights of the
CEC (0.60) and Silte (0.65) variables stood out
(Table 2, Figure 3A). The scores graph (Figure 3B) highlights the
non-formation of groups in relation to the samples collected in treatments I,
II and III, which are dispersed.
Table 2. Contribution of
variables to the principal components (CP) 1 and 2 in the Nossa
Senhora do Perpétuo Socorro Settlement Project,
Nova Ipixuna, Pará. |
|||
Variables |
Unit |
CP1 |
CP2 |
pH |
Water |
-0.30 |
-0.05 |
MO |
g/kg |
-0.27 |
-0.11 |
P |
mg/dm³ |
-0.28 |
-0.16 |
K |
-0.30 |
-0.03 |
|
Al2+ |
cmolc/dm³ |
0.28 |
0.04 |
Ca2+ |
-0.30 |
-0.01 |
|
Mg2+ |
-0.29 |
0.03 |
|
H+Al |
0.29 |
0.10 |
|
S |
-0.28 |
0.22 |
|
V% |
% |
-0.29 |
0.14 |
CEC |
cmolc/dm³ |
-0.09 |
0.60 |
Clay |
% |
-0.28 |
-0.20 |
Silte |
0.05 |
0.65 |
|
Sand |
0.27 |
-0.25 |
|
pH: Hydrogenionic potential; MO: organic matter; P:
phosphorus; K: potassium; Al2+: aluminum; Ca2+: calcium; Mg2+: magnesium; H + Al: potential acidity; S: sulfur; V%:
base saturation; CEC: cation exchange capacity. |
Figure 3. Graph of loadings
(A) and scores (B) of soil samples at the Nossa
Senhora do Perpétuo Socorro Settlement Project, Nova Ipixuna, Pará.
The results of the analysis of
principal components reinforce the results obtained in the analysis of
variance, in which similarities were observed in the physical-chemical
properties of the soil between the agroforestry system and the areas of natural
regeneration of different years, due to the fact that there is no formation of
patterns that differentiate them, in addition to the means that do not have
significant differences, indicating that the use of SAF did not generate
significant impacts on the soil.
In general, converting forests
to agricultural land causes damage to soil stability and leads to increased
erosion (LE BISSONNAIS et al., 2018). However, it was verified in this study,
that the area with agroforestry system had similar characteristics to the area
in recovery of ten years. Therefore, the use of SAF in the recovery of areas is
beneficial, as often there is an increase in productivity growth rates
(MARTORANO et al., 2016).
These crops, on an organic
basis, help to maintain nutrients and biomass, given that the variation of
species (tree, fruit and leguminous) in the system makes the agricultural
environment conducive to recovery and production conditions (KAMIYAMA et al.,
2011). Therefore, conservation management practices assist in the process of
reversing degradation and adding organic matter, resulting in improvements in
soil attributes (SIQUEIRA-NETO et al., 2010; VEZZANI; MIELNICZUK, 2011).
So, the presence of a
consortium of species as a silvicultural practice is important to facilitate the
recovery of the environment, and can reduce costs related to pest control,
since due to the variety of species this occurs naturally (RODRIGUES et al.,
2008; PAUL; WEBER, 2016; MARTINS et al., 2019). In addition, agroforestry
plantations, managed by family farmers, can also be a source of food for the
producer nucleus, as well as economic activities, in which family survival and
reproduction lead to the generation of profits (RIBEIRO et al., 2004).
CONCLUSIONS
The use of an agroforestry
system is beneficial for the soil, since it presents physico-chemical
characteristics similar to the natural regeneration
area of ten years, even though it has only been implanted for five years.
Therefore, the SAF can be used to recover areas, as well as being a source of
production and income.
REFERENCES
ALVARES, C. A.; STAPE, J. L.;
SENTELHAS, P. C.; GONÇALVES, J. L. M.; SPAROVEK, G. Köppen's
climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728, 2013. 10.1127/0941-2948/2013/0507.
ARAUJO,
E. C. G.; SILVA, T. C.; LIMA, T. V.; SANTOS, N. A. T.; BORGES, C. H. A.
Macrofauna como bioindicadora de qualidade do solo
para agricultura convencional e agrofloresta.
Agropecuária Científica no Semiárido, v. 14, n. 2, p. 108-116, 2018. 10.30969/acsa.v14i2.975.
BAKONYI,
S. M. C. Manejo e recuperação de áreas degradadas. Curitiba: Instituto Federal
de Educação, Ciência e Tecnologia – Paraná, 2012.
BERTACCHI,
M. I. F.; BRANCALION, P. H. S.; BRONDANI, G. E.; MEDEIROS, J. C.; RODRIGUES, R.
R. Caracterização das condições de microssítio de
áreas em restauração com diferentes idades. Revista Árvore, v. 36, n. 5, p. 895-905, 2012. 10.1590/S0100-67622012000500012.
DOLLINGER, J.; JOSE, S.
Agroforestry for soil health. Agroforestry Systems, v. 92, n. 2, p. 213-219,
2018. 10.1007/s10457-018-0223-9.
FILIZOLA,
H. F.; GOMES, M. A. F.; SOUZA, M. D. (eds.). Manual de procedimentos de coleta
de amostras em áreas agrícolas para análise da qualidade ambiental: solo, água
e sedimentos. Jaguariúna: Embrapa Meio Ambiente, 2006.
FISHER,
J. B.; BADGLEY, G.; BLYTH, E. Global nutrient limitation in terrestrial vegetation. Global Biogeochemical
Cycles, v. 26, n. 3, p. 1-9, 2012. 10.1029/2011GB004252.
HONGYU,
K.; SANDANIELO, V. L. M.; OLIVEIRA JUNIOR, G. J. Análise de Componentes
Principais: resumo teórico, aplicação e interpretação. E&S - Engineering and Science, v. 1, n.
5, p. 83-90, 2015. 10.18607/ES20165053.
IBGE,
Instituto Brasileiro de Geografia e Estatística. Bases cartográficas: malhas
digitais. 2015. Avaiable
on: <ftp://geoftp.ibge.gov.br/organizacao_do_territorio/malhas_territoriais/malhas_municipais/municipio_2015/> . Acess on: jun. 15th, 2020.
INKOTTE,
J.; MARTINS, R. C. C.; SCARDUA, F. P.; PEREIRA, R. S. Métodos de avaliação da
ciclagem de nutrientes no bioma Cerrado: uma revisão sistemática. Ciência Florestal, v. 29, n. 2, p. 998-1003, 2019. 10.5902/1980509827982.
JOSE, S.; GILLESPIE, A. R.;
PALLARDY, S. G. Interspecific interactions in temperate agroforestry.
Agroforestry Systems, v. 61, n. 1-3, p. 237-255, 2004. 10.1023/B:AGFO.0000029002.85273.9b.
KAMIYAMA,
A.; MARIA, I. C.; SOUZA, D. C. C.; SILVEIRA, A. P. D. Percepção ambiental dos
produtores e qualidade do solo em propriedades orgânicas e convencionais. Bragantia, v. 70, n. 1, p.
176-184, 2011. 10.1590/S0006-87052011000100024.
LE BISSONNAIS, Y.; PRIETO, I.;
ROUMET, C.; NESPOULOUS, J.; METAYER, J.; HOUN, S.; VILLATORO, M.; STROKES, A.
Soil aggregate stability in Mediterranean and tropical agro-ecosystems:
effect of plant roots and soil characteristics. Plant and Soil, v. 424, n. 1-2, p.
303-317, 2018. 10.1007/s11104-017-3423-6.
MARTINS,
E. M.; SILVA, E. R.; CAMPELLO, E. F. C.; LIMA, S. S.; NOBRE, C. P.; CORREIA, M.
E. F.; RESENDE, A. S. O uso de sistemas agroflorestais diversificados na
restauração florestal na Mata Atlântica. Ciência Florestal, v. 29, n. 2, p. 632-648, 2019. 10.5902/1980509829050.
MARTORANO, L. G.; SIVIERO, M.
A.; TOURNE, D. C. M.; VIEIRA, S. B.; FITZJARRALD, D. R.; VETTORAZZI, C. A.;
BRIENZA JÚNIOR, S.; YEARED, J. A. G.; MEYERING, E.; LISBOA, L. S. S. Agriculture
and forest: a sustainable strategy in the Brazilian Amazon. Australian Journal
of Crop Science, v. 10, n. 8, p. 1136-1143, 2016. 10.21475/ajcs.2016.10.08.p7727.
MASCARENHAS,
A. R. P.; SCCOTI, M. S. V.; MELO, R. R.; CORRÊA, F. L. O.; SOUZA, E. F. M.;
ANDRADE, R. A.; BERGAMIN, A. C.; MÜLLER, M. W.
Atributos físicos e estoques de carbono do solo sob diferentes usos da
terra em Rondônia, Amazônia Sul-Ocidental. Pesquisa Florestal Brasileira, v.
37, n. 89, p. 19-27, 2017. 10.4336/2017.pfb.37.89.1295.
NOVAK,
E.; CARVALHO, L. A.; SANTIAGO, E. F. BRUMATTI, A. V.; SANTOS, L. L.; SALES, L.
C. Variação temporal dos atributos microbiológicos do solo sob diferentes usos.
Revista de Ciências Agrárias, v. 41, n. 3, p. 603-611, 2018. 10.19084/RCA17300.
PAUL, C.; WEBER, M. Effects of
planting food crops on survival and early growth of timber trees in eastern
Panama. New forests,
v. 47, n. 1, p. 53-72, 2016. 10.1007/s11056-015-9477-5.
RIBEIRO,
R. N. S.; SANTANA, A. C.; TOURINHO, M. M. Análise exploratória da socioeconomia de sistemas agroflorestais em várzea flúvio-marinha, Cametá-Pará, Brasil. Revista de Economia e
Sociologia Rural, v. 42, n. 1, p. 133–152, 2004. 10.1590/S0103-20032004000100007.
RODRIGUES,
E. R.; CULLEN JÚNIOR, L.; MOSCOGLIATO, A. V.; BELTRAME, T. P. O uso do sistema
agroflorestal Taungya na restauração de reservas
legais: indicadores econômicos. Floresta, v. 38, n. 3, p. 517-525, 2008. 10.5380/rf.v38i3.12420.
RODRIGUES,
P. G.; RUIVO, M. L. P.; PICCININ, J. L.; JARDIM, M. A. G. Contribuição dos
atributos químicos do solo no desenvolvimento vegetativo do paricá
em diferentes sistemas de cultivo. Ciência Florestal, v. 26, n. 1, p. 59-68, 2016. 10.5902/1980509821091.
SHAPIRO, S. S.; WILK, M. B. An
analysis of variance test for normality (complete sample). Biometrika,
v. 52, n. 3/4, p. 591-611, 1965. 10.2307/2333709.
SILVA, C. B. R.; SANTOS
JUNIOR, J. A.; ARAÚJO, A. J. C.; SALES, A.; SIVIERO, M. A.; ANDRADE, F. W. C.;
CASTRO, J. P.; LATORRACA, J. V. F.; MELO, L. E. L. Properties of juvenile wood
of Schizolobium parahyba
var. amazonicum (paricá)
under different cropping systems. Agroforestry
Systems, v. 94, n. 1, p. 583-595, 2019. 10.1007/s10457-019-00422-3.
SILVA,
S. A. S.; SILVA, A. C. M; GONÇALVES, D. B.; LEÃO, F. M. Avaliação da matéria
orgânica e pH do solo em sistemas agroflorestais localizados na região de
Altamira-Pa. Agrarian Academy, Goiânia, v.1, n. 2, p. 15-25,
2014. 10.18677/Agrarian_Academy_2014_026.
SIQUEIRA-NETO, M.; SCOPEL, E.;
CORBEELS, M.; CARDOSO, A. N.; DOUZET, J.-M.; FELLER, C.; PICCOLO, M. C.; CERRI,
C. C.; BERNOUX, M. Soil carbon stocks under no-tillage mulch-based cropping
systems in the Brazilian Cerrado: An on-farm
synchronic assessment. Soil and Tillage Research, v. 110, p. 187-195, 2010. 10.1016/j.still.2010.07.010.
STATSOFT. Statistica
7.0. Tulsa: StatSoft,
p. 250. 2004.
STUMPF,
L.; PINTO, M. A. B.; PAULETTO, E. A.; PINTO, L. F. S.; DUTRA JUNIOR, L. A.
Recuperação de solos degradados por mineração de carvão: indicadores de
qualidade e espécies vegetais. Revista Brasileira de Ciências Agrárias, v. 11,
n. 3, p. 210-217, 2016. 10.5039/agraria.v11i3a5388.
TEIXEIRA,
P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. (eds.). Manual de métodos
de análise de solo. 3. ed. Brasília: Embrapa, 2017. 574 p.
TRUAX, B.; GAGNON, D.;
FORTIER, J.; LAMBERT, F. Yield in 8 year-old hybrid
poplar plantations on abandoned farmland along climatic and soil fertility
gradients. Forest Ecology
and Management, v. 267, n. 1, p. 228-239, 2012. 10.1016/j.foreco.2011.12.012.
VEZZANI,
F. M.; MIELNICZUK, J. Agregação e estoque de carbono em argissolo
submetido a diferentes práticas de manejo agrícola. Revista Brasileira de
Ciência do Solo, v. 35, p. 213-223, 2011. 10.1590/S0100-06832011000100020.
XAVIER,
F. A. S.; ALMEIDA, E. F.; CARDOSO, I. M.; MENDONÇA, E. S. Soil
phosphorus distribution in sequentially extracted fractions in tropical coffee-agroecosystems
in the Atlantic Forest biome, Southeastern Brazil. Nutrient Cycling in Agroecosystems, v. 89,
p. 31-44, 2011. 10.1007/s10705-010-9373-5.