Can higher CO2 concentrations affect yield and quality parameters in lettuce and sugar beet crops?

Authors

  • Pedro Alexander Velasquez-Vasconez Escola Superior de Agricultura "Luiz de Queiroz", São Paulo
  • Maria Velasquez-Vasconez Universidad de Nariño, Pasto, Nariño
  • Cristian Cardenas Universidad de Nariño, Pasto, Nariño
  • Oyvin Nyheim Skarsgard Norwegian University of Life Sciences
  • Hugo Ruiz Eraso Universidad de Nariño, Pasto, Nariño

DOI:

https://doi.org/10.18378/rvads.v16i1.8357

Keywords:

Protected crops, Climatic change, Carbon fertilization, Vegetables, Plant nutrition

Abstract

It has been suggested that the increase in CO2 levels in the coming decades will have positive consequences on the nutritional content and yield of agricultural crops. However, the effects of the increase in CO2 concentrations remain little known in Andean region. This study evaluated the effect of increased CO2 on the protein content and growth of sugar beet and lettuce plants in the Andean region of Colombia. We used a Randomized Complete Block Design, strip 1 was open field, strip 2 was low tunnel with ambient CO2 and strip 3 was low tunnel with 1000 ppm CO2. The sugar beet experiment three harvest periods were evaluated. The results indicated that CO2 fertilization did not have a significant effect on the yield and head diameter of the lettuce. However, biomass production tended to increase in the first sugar beet harvest but decreased significantly in the last two harvests, probably due to a negative effect caused by acclimatization to CO2 enrichment. The protein content was not affected by the increase in CO2 levels in any of the crops. The results suggest the increase in atmospheric CO2 in the next years will not cause any benefit in lettuce or sugar beet grown in the Andean region.

Downloads

Download data is not yet available.

References

BASLAM, M.; GARMENDIA, I.; GOICOECHEA, N. Elevated CO2 may impair the beneficial effect of arbuscular mycorrhizal fungi on the mineral and phytochemical quality of lettuce. Annals of Applied Biology, 161(2):180–191, 2012. 10.1111/j.1744-7348.2012.00563.x .

BEACH, R. H.; SULSER, T. B.; CRIMMINS, A.; CENACCHI, N.; COLE, J.; FUKAGAWA, N. K.; MASON-D’CROZ, D.; MYERS, S.; SAROFIM, M. C.; SMITH, M.; ZISKA, L. H. Combining the effects of increased atmospheric carbon dioxide on protein, iron, and zinc availability and projected climate change on global diets: a modelling study. The Lancet Planetary Health, 3(7):307–317, 2019. 10.1016/S2542-5196(19)30094-4.

BLOOM, A.; BURGER, M.; KIMBALL, B.; PINTER, P. Nitrate assimilation is inhibited by elevated CO2 in field-grown wheat. Nature Climate Change, 4(6):477–480, 2014. 10.1038/nclimate2183.

BROWN, H. E.; JAMIESON, P. D.; BROOKING, I. R.; MOOT, D. J.; HUTH, N. I. Integration of molecular and physiological models to explain time of anthesis in wheat. Annals of Botany, 112(9):1683–1703, 2013. 10.1093/aob/mct224.

BUCKLEY, T. N. How do stomata respond to water status? New Phytologist, 224(1):21–36, 2019. 10.1111/nph.15899.

BUSCH, F. A. Photorespiration in the context of rubisco biochemistry, CO2 diffusion and metabolism. The Plant Journal, 101(4):919–939, 2020. 10.1111/tpj.14674.

DONG, J.; GRUDA, N.; LAM, S. K.; LI, X.; DUAN, Z. Effects of elevated CO2 on nutritional quality of vegetables: a review. Frontiers in Plant Science, 9:1–11, 2018. 10.3389/fpls.2018.00924.

DUVAL, B. D.; DIJKSTRA, P.; DRAKE, B. G.; JOHNSON, D. W.; KETTERER, M. E.; MEGONIGAL, J. P.; HUNGATE, B. A. Element pool changes within a scrub-oak ecosystem after 11 years of exposure to elevated CO2. Plos One, 8(5):2013. 10.1371/journal.pone.0064386.

FURLAN, R. A.; ALVES, D. R.; FOLEGATTI, M. V.; BOTREL, T. A.; MINAMI, K. Carbon dioxide applied via irrigation water to lettuce culture. Horticultura Brasileira, 19(1):25–29, 2001.

FUSS, S.; CANADELL, J. G.; PETERS, G. P.; TAVONI, M.; ANDREW, R. M.; CIAIS, P.; JACKSON, R. B.; JONES, C. D.; KRAXNER, F.; NAKICENOVIC, N.; QUÉRÉ, C. LE; RAUPACH, M. R.; SHARIFI, A.; SMITH, P.; YAMAGATA, Y. Betting on negative emissions. Nature Publishing Group, 4(10):850–853, 2014. 10.1038/nclimate2392.

GRAY, S. B.; DERMODY, O.; KLEIN, S. P.; LOCKE, A. M.; MCGRATH, J. M.; PAUL, E.; ROSENTHAL, D. M.; RUIZ-VERA, U. M.; SIEBERS, M. H.; STRELLNER, R.; AINSWORTH, A.; BERNACCHI, C. J.; LONG, S. P.; ORT, D. R.; LEAKEY, A. D. B. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean Sharon. Nature Plants, 2(9):1–8, 2016. 10.1038/nplants.2016.132.

HE, J.; LE GOUIS, J.; STRATONOVITCH, P.; ALLARD, V.; GAJU, O.; HEUMEZ, E.; ORFORD, S.; GRIFFITHS, S.; SNAPE, J. W.; FOULKES, M. J.; SEMENOV, M. A.; MARTRE, P. Simulation of environmental and genotypic variations of final leaf number and anthesis date for wheat. European Journal of Agronomy, 42:22–33, 2012. 10.1016/j.eja.2011.11.002.

IÑIGUEZ, C.; CAPÓ‐BAUÇÀ, S.; NIINEMETS, Ü.; STOLL, H.; AGUILÓ‐NICOLAU, P.; GALMÉS, J. (2020). Evolutionary trends in RuBisCO kinetics and their co‐evolution with CO2 concentrating mechanisms. The Plant Journal, 101(4):897–918, 2020. 10.1111/tpj.14643.

JUNG, D. H.; KIM, T. Y.; CHO, Y.; SON, J. E. Development and validation of a canopy photosynthetic rate Model of lettuce using light intensity, CO2 concentration, and day after transplanting.. Protected Horticulture and Plant Factory, 27(2):132–139, 2018. 10.12791/KSBEC.2018.27.2.132.

JÚNIOR, A. P. B.; GRANGEIRO, L. C.; NETO, F. B.; NEGREIROS, M. Z.; DE SOUZA, J. D. O.; AZEVEDO, P. E.; DE MEDEIROS, D. C. Lettuce cultivation in low tunnels of agricultural textile. Horticultura Brasileira, 22(4):801–803, 2004.

KINMONTH-SCHULTZ, H. A.; MACEWEN, M. J.; SEATON, D. D.; MILLAR, A. J.; IMAIZUMI, T.; KIM, S.-H. Mechanistic model of temperature influence on flowering through whole-plant accumulation of FT. BioRxiv, 1–38, 2018. 10.1101/267104.

KUMAR, S.; KUMAR, A.; SINGH, S. S.; PRASAD, R.; KANT, S. Effect of plastic low tunnel on flowering and fruiting behaviour during off season of bottle gourd Lagenaria siceraria (Mol.) Standl. International Journal of Current Microbiology and Applied Sciences, 7, 4829–4835. 2018.

KUMUDINI, S.; ANDRADE, F. H.; BOOTE, K. J.; BROWN, G. A.; DZOTSI, K. A.; EDMEADES, G. O.; GOCKEN, T.; GOODWIN, M.; HALTER, A. L.; HAMMER, G. L.; HATFIELD, J. L.; JONES, J. W.; KEMANIAN, A. R.; KIM, S. H.; KINIRY, J.; LIZASO, J. I.; NENDEL, C.; NIELSEN, R. L.; PARENT, B.; TOLLENAAR, M. Predicting maize phenology: intercomparison of functions for developmental response to temperature. Agronomy Journal, 106(6):2087–2097, 2014. 10.2134/agronj14.0200.

LEE, T. D.; BARROTT, S. H.; REICH, P. B. Photosynthetic responses of 13 grassland species across 11 years of free-air CO2 enrichment is modest, consistent and independent of N supply. Global Change Biology, 17(9):2893–2904, 2011. 10.1111/j.1365-2486.2011.02435.x.

LIU, J.; HUANG, W.; CHI, H.; WANG, C.; HUA, H.; WU, G. Effects of elevated CO2 on the fitness and potential population damage of Helicoverpa armigera based on two-sex life table. Scientific Reports, 7(1), 2017. 10.1038/s41598-017-01257-7.

LONG, S. P.; AINSWORTH, E. A.; ROGERS, A.; ORT, D. R. Rising a atmospheric carbon dioxide: plants face the future. Annual Review of Plant Biology, 55(1):591–628, 2004. 10.1146/annurev.arplant.55.031903.141610.

LUTHI, D.; FLOCH, M. L. E; BEREITER, B.; BLUNIER, T.; BARNOLA, J.; SIEGENTHALER, U.; RAYNAUD, D.; JOUZEL, J.; FISCHER, H.; KAWAMURA, K.; STOCKER, T. F. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Letters to Nature, 453(7193):379–382, 2008. 10.1038/nature06949.

PÉREZ-LÓPEZ, U.; MIRANDA-APODACA, J.; MENA-PETITE, A.; MU, A. Responses of nutrient dynamics in barley seedlings to the interaction of salinity and carbon dioxide enrichment. Journal of Plant Physiology, 170(17):1517-1525, 2013. 10.1016/j.envexpbot.2013.11.004.

SIGNORE, A.; BELL, L.; SANTAMARIA, P.; WAGSTAFF, C.; VAN LABEKE, M. C. Red light is effective in reducing nitrate concentration in rocket by increasing nitrate reductase activity, and contributes to increased total glucosinolates content. Frontiers in Plant Science, 11, 2020. 10.3389/fpls.2020.00604.

TIAN, Y.; ZHOU, Y.; ZONG, Y.; LI, J.; YANG, N.; ZHANG, M.; GUO, Z.; SONG, H. Construction of functionally compartmental inorganic photocatalyst-enzyme system via imitating chloroplast for efficient photoreduction of CO2 to formic acid. ACS Applied Materials and Interfaces, 12(31):34795–34805, 2020. 10.1021/acsami.0c06684.

VELASQUEZ, P.; RUÌZ, H.; CHAVES, G.; LUNA, C. Productivity of lettuce Lactuca sativa in high tunnel conditions on Vitric Haplustands Soil. Revista De Ciencias Agrícolase Ciencias Agrícolas, 31(2):93–105, 2014. 10.22267/rcia.143102.34.

WARREN, J. M.; ELISABETH, P.; WULLSCHLEGER, S. D.; THORNTON, P. E.; HASENAUER, H.; NORBY, R. J. Ecohydrologic impact of reduced stomatal conductance in forests exposed to elevated CO2. Ecohydrology, 210(4):196–210, 2011. 10.1002/eco.

WEIGEL, H.; MANDERSCHEID, R. Crop growth responses to free air CO2 enrichment and nitrogen fertilization: rotating barley, ryegrass, sugar beet and wheat. European Journal of Agronomy, 43:97–107,2012. 10.1016/j.eja.2012.05.011.

Downloads

Published

01-01-2021

How to Cite

VELASQUEZ-VASCONEZ, P. A.; VELASQUEZ-VASCONEZ, M.; CARDENAS, C.; SKARSGARD, O. N.; ERASO, H. R. Can higher CO2 concentrations affect yield and quality parameters in lettuce and sugar beet crops?. Revista Verde de Agroecologia e Desenvolvimento Sustentável, [S. l.], v. 16, n. 1, p. 27–32, 2021. DOI: 10.18378/rvads.v16i1.8357. Disponível em: https://gvaa.com.br/revista/index.php/RVADS/article/view/8357. Acesso em: 22 jan. 2025.

Issue

Section

AGRICULTURAL SCIENCES