Edible films from polyneric blends of chitosan, pectin and cassava starch

Authors

  • Tamara Lorena Costa Universidade Federal Rural do Semi-Árido, Mossoró
  • Ricardo Henrique Lima Leite Universidade Federal Rural do Semi-Árido, Mossoró
  • Edna Maria Mendes Aroucha Universidade Federal Rural do Semi-Árido, Mossoró
  • Francisco Klebson Gomes Santos Universidade Federal Rural do Semi-Árido, Mossoró

DOI:

https://doi.org/10.18378/rvads.v15i4.6713

Keywords:

Edible Films, Barrier properties, Shelf life

Abstract

Non-biodegradable polymeric materials have become a problem due to their long degradation time in the environment. Thus, studies show interest in the development of polymeric films and mixtures of these as functional materials in the most diverse areas, especially due to their characteristics such as biocompatibility, biodegradability and non-toxicity. Therefore, the objective was to develop and characterize edible films produced by polymeric blends, composed of natural polysaccharides, aiming at their use as edible coatings for fruits. Seven polymeric films were developed using the casting technique: film 1 (Chitosan), film 2 (Pectin), film 3 (Cassava Starch), film 4 (Chitosan + Pectin), film 5 (Chitosan + Cassava Starch), film 6 (Pectin + Cassava Starch) and film 7 (Chitosan + Pectin + Cassava Starch). All presented homogeneous surfaces and without phase separation. Regarding optical properties, all obtained high luminosity, the most opaque being those of chitosan, presenting L * 77.40 ± 0.28 (4). Regarding the barrier properties, the solubility values were lower in those containing chitosan due to their insolubility in water, 22% for 1 and 18% for 5. The films formed by the blends provided a reduction in the water permeation rate without compromise its characteristics, such as 4 and 5, with a rate of 14.15 g.m-2.h-1 and 20.43 g.m-2.h-1, respectively.

Downloads

Download data is not yet available.

References

AGUIRRE - LOREDO, R. Y.; RODRÍGUEZ - HERNÁNDEZ, A. I.; MORALES - SÁNCHEZ, E.; GÓMEZ-ALDAPA, C. A.; VELAZQUEZ, G. Effect of equilibrium moisture content on barrier, mechanical and thermal properties of chitosan films. Food Chemistry, v. 196, p. 560–566, 2016. 10.1016/j.foodchem.2015.09.065

ALVES, V. D.; COSTA, N.; COELHOSO, I. M. Barrier properties of biodegradable composite films based on kappa-carrageenan/pectin blends and mica flakes. Carbohydrate Polymers, v. 79, n. 2, p. 269–276, 2010. 10.1016/j.carbpol.2009.08.002

ASTM E96/E80M (1980). Standard test methods for water vapour transmission of materials. Annual Book of Standards.

ASTM D882-91. (1996). Standard test methods for tensile properties of thin plastic sheeting. Annual Book of Standards.

AZEVEDO, V. M.; SILVA, E. K.; PEREIRA, C. F. G.; COSTA, J. M. G. DA; BORGES, S. V. Whey protein isolate biodegradable films: Influence of the citric acid and montmorillonite clay nanoparticles on the physical properties. Food Hydrocolloids, v. 43, p. 252-258, 2015. 10.1016/j.foodhyd.2014.05.027

AZEVEDO, V. M.; BORGES, S. V.; MARCONCINI, J. M.; YOSHIDA, M. I.; NETO, A. R. S.; PEREIRA, T. C.; PEREIRA, C. F. G. Effect of replacement of corn starch by whey protein isolate in biodegradable film blends obtained by extrusion. Carbohydrate Polymers, v. 157, p. 971–980, 2017. 10.1016/j.carbpol.2016.10.046

BARON, R. D.; PÉREZ, L. L.; SALCEDO, J. M.; CÓRDOBA, L. P.; SOBRAL, P. J. DO A. Production and characterization of films based on blends of chitosan from blue crab (Callinectes sapidus) waste and pectin from Orange (Citrus sinensis Osbeck) peel. International Journal of Biological Macromolecules, v. 98, p. 676–683, 2017. 10.1016/j.ijbiomac.2017.02.004.

BELIBI, P. C.; DAOU, T. J.; NDJAKA, J. M. B.; NSOM, D.; MICHELIN, L.; DURAND, B. A comparative study of some properties of cassava and tree cassava starch films. Physics Procedia, v. 55, p. 220–226, 2014. 10.1016/j.phpro.2014.07.032 .

BOF, M. J.; BORDAGARAY, V. C.; LOCASO, D. E.; GARCÍA, M. A. Chitosan molecular weight effect on starch-composite film properties. Food Hydrocolloids, v. 51, p. 281–294, 2015. 10.1016/j.foodhyd.2015.05.018

BOINOVICH, L.; EMELYANENKO, A. M.; KOROLEV, V. V; PASHININ, A. S. Effect of wettability on sessile drop freezing: when superhydrophobicity stimulates an extreme freezing delay. Langmuir, v. 30, n. 6, p. 1659-1668 , 2014. 10.1021/la403796g

BONILLA, J.; TALÓN, E.; ATARÉS, L.; VARGAS, M.; CHIRALT, A. Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of wheat starch – chitosan films. Journal of Food Engineering, v. 118, n. 3, p. 271–278, 2013. 10.1016/j.jfoodeng.2013.04.008.

CASARIEGO, A.; SOUZA, B. W. S.; CERQUEIRA, M. A.; TEIXEIRA, J. A.; CRUS, L.; DÍAZ, R.; VICENTE, A. A. Chitosan/clay films properties as affected by biopolymer and clay micro/nanoparticles concentrations. Food Hydrocolloids, v. 23, n. 7, p. 1895–1902, 2009. 10.1016/j.foodhyd.2009.02.007

CHILLO, S.; FLORES, S.; MASTROMATTEO, M.; CONTE, A.; GERSCHENSON, L.; DEL NOBILE, M. A. Influence of glycerol and chitosan on tapioca starch-based edible film properties. Journal of Food Engineering, v. 88, n. 2, p. 159–168, 2008. 10.1016/j.jfoodeng.2008.02.002

CIELAB – COMISSÃO INTERNACIONAL DE ILUMINAÇÃO – Sistema de cores, 1976. Disponível em: <http://www.sightgrip.co.uk/bbstest.htm>.

FAKHOURI, F. M.; MARTELLI, S. M.; CAON, T.; VELASCO, J. I.; MEI, L. H. I. Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated red crimson grapes. Postharvest Biology and Technology, v. 109, p. 57–64, 2015. 10.1016/j.postharvbio.2015.05.015.

HOSSEINI, S. F.; REZAEI, M.; ZANDI, M.; FARAHMANDGHAVI, F. Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food Chemistry, v. 194, p. 1266–1274, 2016. 10.1016/j.foodchem.2015.09.004.

JARAMILLO, C. M.; SELIGRA, P. G.; GOYANES, S.; BERNAL, C.; FAMÁ, L. Biofilms based on cassava starch containing extract of yerba mate as antioxidant and plasticizer. Starch, v. 67, p. 780–789, 2015. 10.1002/star.201500033 .

LEWANDOWSKA, K.; SIONKOWSKA, A.; GRABSKA, S. Chitosan blends containing hyaluronic acid and collagen. Compatibility behaviour. Journal of Molecular Liquids, v. 212, p. 879–884, 2015. 10.1016/j.molliq.2015.10.047.

LUCHESE, C. L.; FRICK, J. M.; PATZER, V. L.; SPADA, J. C.; TESSARO, I. C. Synthesis and characterization of biofilms using native and modified pinhão starch. Food Hydrocolloids, v. 45, p. 203–210, 2015. 10.1016/j.foodhyd.2014.11.015

MARAN, J. P.; SIVAKUMAR, V.; SRIDHAR, R.; THIRUGNANASAMBANDHAM, K. Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydrate Polymers, v. 92, n. 2, p. 1335–1347, 2013. 10.1016/j.carbpol.2012.09.069.

MENEGUIN, A. B.; CURY, B. S. F.; EVANGELISTA, R. C. Films from resistant starch-pectin dispersions intended for colonic drug delivery. Carbohydrate Polymers, v. 99, p. 140–149, 2014. 10.1016/j.carbpol.2013.07.077.

NESIC, A.; ONJIA, A.; DAVIDOVIC, S.; DIMITRIJEVIC, S; ERRICO, M. E.; SANTAGATA, G.; MALINCONICO, M. Design of pectin-sodium alginate based films for potential healthcare application: Study of chemico-physical interactions between the components of films and assessment of their antimicrobial activity. Carbohydrate Polymers, v. 157, p. 981–990, 2017. 10.1016/j.carbpol.2016.10.054

PASSERONE, A.; SANGIORGI, R.; VALBUSA, G. surface tension and density of molten glasses in the system La2O3 Na2 Si2O5. Ceramurgia International, v. 5. n. 1. p. 18-22, 1979. 10.1016/0390-5519(79)90005-X.

RAMPINO, A.; BORGOGNA, M.; BELLICH, B.; BLASI, P.; VIRGILIO, F.; CESARO, A. Chitosan-pectin hybrid nanoparticles prepared by coating and blending techniques. European Journal of Pharmaceutical Sciences, v. 84, p. 37–45, 2016. 10.1016/j.ejps.2016.01.004.

SELIGRA, P. G.; JARAMILLO, C. M.; FAMÁ, L.; GOYANES, S. Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent. Carbohydrate Polymers, v. 138, p. 66–74, 2016. 10.1016/j.carbpol.2015.11.041.

SIDDIQI, N.; BHOI, B.; PARAMGURU, R. K.; SAHAJWALLA, V.; OSTROVSKI, O. Slag - graphite wettability and reaction kinetics Part 1 Kinetics and mechanism of molten FeO reduction reaction. Ironmaking & steelmaking, v. 27, n. 5, p. 367-372, 2000. 10.1179/030192300677679.

SONG, X.; ZUO, G.; CHEN, F. Effect of essential oil and surfactant on the physical and antimicrobial properties of corn and wheat starch films. International Journal of Biological Macromolecules, v. 107, p. 1302–1309, 2018. 10.1016/j.ijbiomac.2017.09.114.

THEVARAJAH, J. J.; LEEUWEN, M. P. VAN; COTTET, H.; CASTIGNOLLES, P.; GABORIEAU, M. Determination of the distributions of degrees of acetylation of chitosan. International Journal of Biological Macromolecules, v. 95, p. 40–48, 2017. 10.1016/j.ijbiomac.2016.10.056.

ZAVAREZE, E. DA R.; PINTO, V. Z.; KLEIN, B.; HALAL, S. M. L. EL; ELIAS, M. C.; HERNÁNDEZ, C. P.; DIAS, A. R. G. Development of oxidised and heat-moisture treated potato starch film. Food chemistry, v. 132, n. 1, p. 344–350, 2012. 10.1016/j.foodchem.2011.10.090.

Published

01-10-2020

How to Cite

COSTA, T. L.; LEITE, R. H. L.; AROUCHA, E. M. M.; SANTOS, F. K. G. Edible films from polyneric blends of chitosan, pectin and cassava starch. Revista Verde de Agroecologia e Desenvolvimento Sustentável, [S. l.], v. 15, n. 4, p. 391–397, 2020. DOI: 10.18378/rvads.v15i4.6713. Disponível em: https://gvaa.com.br/revista/index.php/RVADS/article/view/6713. Acesso em: 24 nov. 2024.

Issue

Section

INTERDISCIPLINARY

Most read articles by the same author(s)

<< < 1 2 3 > >> 

Similar Articles

You may also start an advanced similarity search for this article.