Respuestas de Baccharis trimera (Less.) a la restricción de agua

Autores/as

DOI:

https://doi.org/10.18378/rvads.v16i3.8360

Palabras clave:

Sequía, Planta medicinal, Estrés oxidativo, Bioquímica, Prolina

Resumen

El cambio climático puede provocar desequilibrios en las plantas. Baccharis trimera es una especie que se encuentra a menudo en condiciones adversas y tiene propiedades medicinales y agrícolas. Así, el objetivo fue evaluar las respuestas bioquímicas y fisiológicas de esta planta a niveles de restricción de agua (RA). Se identificaron y recolectaron muestras de B. trimera en Erechim - RS y se propagaron en un invernadero. Una vez aclimatados, fueron sometidos a 0, 25, 75 y 100% de RA, determinado según la saturación de agua en el suelo por capilaridad. Después de 30 días de tratamiento, se determinaron las respuestas fisiológicas: crecimiento y biomasa fresca y seca; y respuestas bioquímicas: actividad de las enzimas superóxido dismutasa (SOD), guayacol peroxidasa (GP) y ascorbato peroxidasa (APX), prolina, contenido de peróxido de hidrógeno y proteínas y peroxidación de lípidos. Los datos se sometieron a análisis de regresión y correlación de Pearson. La RA media de 27,37% indujo un aumento en los parámetros fisiológicos evaluados, pero el crecimiento de las raíces se vio afectado en condiciones de RA superiores al 50%. Con el aumento de RA hubo un aumento en la actividad de las enzimas SOD en el parte aérea y de APX en la raíz. En condición de RA baja, se verificó el mantenimiento del contenido de prolina. Por lo tanto, con niveles bajos de RA, alrededor del 27%, B. trimera tiene un aumento en el crecimiento de las raíces y en la biomasa de parte aérea y raíces. La prolina, SOD y APX son una vía de eliminación del estrés generado por la RA en B. trimera.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Francine Falcão de Macedo Nava, Universidade de Passo Fundo, Passo Fundo

Graduada em Agronomia pela Universidade Federal da Fronteira Sul, Mestra em Agronomia pela Universidade de Passo Fundo, Doutoranda em Agronomia pela Universidade de Passo Fundo. 

Vilson Conrado da Luz, Universidade de São Paulo, São Paulo

Engenheiro Ambiental e Sanitarista, Mestrando em Engenharia Química, Universidade de São Paulo, São Paulo.

Lucas Antonio Stempkowski, Universidade Federal de Viçosa, Viçosa

Engenheiro Agrônomo, Doutorando em Fitopatologia, Universidade Federal de Viçosa, Viçosa.

Lenir Fátima Gotz, Universidade de São Paulo, Piracicaba

Engenheira Agrônoma, Doutoranda em Solos e Nutrição de Plantas, Universidade de São Paulo, Piracicaba.

Fabiana Tonial, Universidade de Passo Fundo, Passo Fundo

Farmacêutica-Bioquímica, Doutora em Microbiologia, Parasitologia e Patologia, Professora, Universidade de Passo Fundo, Passo Fundo

Denise Cargnelutti, Universidade Federal da Fronteira Sul, Erechim

Bióloga, Doutora em Bioquímica Toxicológica, Professora, Universidade Federal da Fronteira Sul, Erechim.

Citas

AHMED, N.; WANG, G.; OLUWAFEMI, A.; MUNIR, S.; HU, Z. Y.; SHAKOOR, A.; IMRAN, M. A. Temperature trends and elevation dependent warming during 1965–2014 in headwaters of Yangtze River, Qinghai Tibetan Plateau. Journal of Mountain Science, 17:556-571, 2020. https://doi.org/10.1007/s11629-019-5438-3

AMBRIZZI, T.; ARAÚJO, M. Sumário Executivo do Volume 1 - Base Científica das Mudanças Climáticas. Contribuição do Grupo de Trabalho 1 para o 1º Relatório de Avaliação Nacional do Painel Brasileiro de Mudanças Climáticas. PBMC, Rio de Janeiro, 2012.

BASU, M.; SHAW, R. Water policy, climate change and adaptation in South Asia. International Journal of Environmental Studies, 70:175-191, 2013. https://doi.org/10.1080/00207233.2013.781736

BATES, L. S.; WALDREN, R. P.; TEARE, I. D. Rapid determination of free proline for water-stress studies. Plant and Soil, 39:205-207, 1973. https://doi.org/10.1007/BF00018060

BENITEZ, L. C.; VIGHI, I. L.; AULER, P. A.; AMARAL, M. N.; MORAES, G. P.; RODRIGUES, G. S.; MAIA, L. C.; MAGALHÃES JUNIOR, A. M; BRAGA, E. J. B. Correlation of proline content and gene expression involved in the metabolism of this amino acid under abiotic stress. Acta Physiologiae Plantarum, 38(267):1-12, 2016. https://doi.org/10.1007/s11738-016-2291-7

BOARETTO, L. F.; CARVALHO, G.; BORGO, L.; CRESTE, S.; LANDELL, M. G.; MAZZAFERA, P.; AZEVEDO, R. A. Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiology and Biochemistry, 74:165-175, 2014. https://doi.org/10.1016/j.plaphy.2013.11.016

BONA, C. M. Estaquia, calagem e sombreamento de carqueja. Dissertation, Federal University of Paraná, Curitiba, 2002, 81p.

BOWNE, J.; BACIC, A.; TESTER, M.; ROESSNER, U. Abiotic Stress and Metabolomics. Annual Plant Reviews, 43:61-85, 2018. https://doi.org/10.1002/9781119312994.apr0463

BRADFORD, M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2):248-254, 1976. https://doi.org/10.1016/0003-2697(76)90527-3

CAMPOS, M. K. F.; CARVALHO, K.; SOUZA, F. S.; MARUR, C. J.; PEREIRA, L. F. P.; BESPALKOK-FILHO, J. C.; VIEIRA, L. G. E. Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environmental and Experimental Botany, 72(2):242-250, 2011. https://doi.org/10.1016/j.envexpbot.2011.03.009

CHEN, C. T.; KAO, C. H. Osmotic stress and water stress have opposite effects on putrescine and proline production in excised rice leaves. Plant Growth Regulation, 13:197-202, 1993.

EL-MOSHATY, F. I. B.; PIKE, S. M.; NOVACKY, A. J.; SEHGAL, O. P. Lipid peroxidation and superoxide production in cowpea (Vigna unguiculata) leaves infected with tobacco ringspot virus or southern bean mosaic virus. Physiological Molecular Plant Pathology 43(2):109-119, 1993. https://doi.org/10.1006/pmpp.1993.1044

FAROOQ, M.; WAHID, A.; KOBAYASHI, N.; FUJITA, D.; BASRA, S. M. A. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29:185-212, 2009. https://doi.org/10.1051/agro:2008021

GHAFFARI, H.; TADAYON, M. R.; NADEEM, M.; CHEEMA, M.; RAZMJOO, J. Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress. Acta Physiologiae Plantarum, 41(23):1-13, 2019. https://doi.org/10.1007/s11738-019-2815-z

GHORECHA, V.; PATEL, K.; INGLE, S.; SUNKAR, R.; KRISHNAYYA, N. S. R. Analysis of biochemical variations and microRNA expression in wild (Ipomoea campanulata) and cultivated (Jacquemontia pentantha) species exposed to in vivo water stress. Physiology and Molecular Biology of Plants, 20(1):57-67, 2014. https://doi.org/10.1007/s12298-013-0207-1

GIANNOPOLITIS, C. N.; RIES, S. K. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiology, 59(2):315-318, 1997. https://doi.org/10.1104/pp.59.2.315

GILL, S. S.; TUTEJA, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12):909-930, 2010. https://doi.org/10.1016/j.plaphy.2010.08.016

HAMEED, A.; BIBI, N.; AKHTER, J.; IQBAL, N. Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiology and Biochemistry, 49(2):178-185, 2011. https://doi.org/10.1016/j.plaphy.2010.11.009

HOJATI, M.; MODARRES-SANAVY, A. S. M.; KARIMI, M.; GHANATI, F. Responses of growth and antioxidant systems in Carthamus tinctorius L. under water deficit stress. Acta Physiologiae Plantarum, 33:105-112, 2011. https://doi.org/10.1007/s11738-010-0521-y

JALEEL, C. A.; SANKAR, B.; MURALI, P. V.; GOMATHINAYAGAM, M.; LAKSHMANAN, G. M.; PANNEERSELVAM, R. Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus: impacts on ajmalicine accumulation. Colloids and Surfaces Biointerfaces, 62(1):105-111, 2008. https://doi.org/10.1016/j.colsurfb.2007.09.026

LORETO, F.; VELIKOVA, V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology, 127(4):1781-1787, 2001. https://doi.org/10.1104/pp.010497

LEUNG, D. W. M. Studies of Catalase in Plants Under Abiotic Stress. Antioxidants and Antioxidant Enzymes in Higher Plants. In: GUPTA D., PALMA J., CORPAS F. (eds) Antioxidants and Antioxidant Enzymes in Higher Plants. Springer, Cham. 1(1):27-39, 2018. https://doi.org/10.1007/978-3-319-75088-0_2

MAROSTICA, T. F.; CAZAROLLI, L. H.; MOURA, G. S.; LUZ, V. C. D.; GUIMARÃES, E. A. C. M.; CARGNELUTTI, D. Does Allium sativum L. tolerate water déficit? Scientific Electronic Archives, 12(6):13-51, 2019. https://doi.org/10.36560/1262019963

MITTLER, R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9):405-410, 2002. https://doi.org/10.1016/S1360-1385(02)02312-9

MOURA, A. R.; NOGUEIRA, R. J. M. C.; SILVA, J. A. A.; LIMA, T. V. Relações hídricas e solutos orgânicos em plantas jovens de Jatropha curcas L. sob diferentes regimes hídricos. Ciência Florestal, 26(2):345-354, 2016. https://doi.org/10.5902/1980509822735

MOURA, G. S.; FRANZENER, G.; STANGARLIN, J. R.; SCHWAN-STRADA, K. R. F. Atividade antimicrobiana e indutora de fitoalexinas do hidrolato de carqueja [Baccharis trimera (Less.) DC.]. Revista Brasileira de Plantas Medicinais, 16(2):309-315, 2014. https://doi.org/10.1590/1983-084X/10_121

NEILL, S. J.; DESIKAN, R.; CLARKE, A.; HURST, R. D.; HANCOCK, J. T. Hydrogen peroxide and nitric oxide as signaling molecules in plants. Journal of Experimental Botany, 53(372)1237-1247, 2002. https://doi.org/10.1093/jexbot/53.372.1237

NOWAK, M.; KLEINWÄCHTER, M.; MANDERSCHEID, R.; WEIGEL, H. J.; SELMAR, D. Drought stress increases the accumulation of monoterpenes in sage (Salvia officinalis) an effect that is compensated by elevated carbon dioxide concentration. Journal of Applied Botany and Food Quality, 83(2):133-136, 2010.

PETRIDIS, A.; THERIOS, I.; SAMOURIS, G.; KOUNDOURAS, S.; GIANNAKOULA, A. Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiology and Biochemistry, 60(1):1-11, 2012. https://doi.org/10.1016/j.plaphy.2012.07.014

PINHEIRO, H. A.; DA MATTA, F. M.; CHAVES, A. R. M.; LOUREIRO, M. E.; DUCATTI, C. Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Annals of Botany, 96(1):101-108, 2005. https://doi.org/10.1093/aob/mci154

PLANCHET, E.; RANNOU, O.; RICOULT, C.; BOUTET-MERCEY, S.; MAIA-GRONDARD, A.; LIMAMI, A. M. Nitrogen metabolism responses to water deficit act through both abscisic acid (ABA)-dependent and independent pathways in Medicago truncatula during post-germination. Journal of Experimental Botany, 62(1):605-615, 2011. https://doi.org/10.1093/jxb/erq294

PRICE, A. H.; STEELE, K. A.; GORHAM, J.; BRIDGES, J. M.; MOORE, B. J.; EVANS, J. L.; RICHARDSON, P.; JONES, R. G. W. Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes: I. Root distribution, water use and plant water status. Field Crop Research, 76(1):11-24, 2002. https://doi.org/10.1016/S0378-4290(02)00012-6

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2020. https://www.R-project.org/.

RABELO, A. C. S.; COSTA, D. C. A review of biological and pharmacological activities of Baccharis trimera. Chemico-Biological Interactions, 296:65-75, 2018. https://doi.org/10.1016/j.cbi.2018.09.002

REDDY, A. R.; CHAITANYA, K. V.; VIVEKANANDAN, M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11):1189-1202, 2004. https://doi.org/10.1016/j.jplph.2004.01.013

RIOBA, N. B.; ITULYA, F. M.; SAIDI, M.; DUDAI, N.; BERNSTEIN, N. Effects of nitrogen, phosphorus and irrigation frequency on essential oil content and composition of sage (Salvia officinalis L.). Journal of Applied Research on Medicinal and Aromatic Plants, 2(1):21-29, 2015. https://doi.org/10.1016/j.jarmap.2015.01.003

SANCHEZ, F. O.; SILVA, R. V.; FERREIRA, R. V.; CAMPOS, C. A. A. Climate change in the Triângulo Mineiro region – Brazil. Revista Brasileira de Climatologia, 21(21):570-587, 2017. https://doi.org/10.5380/abclima.v21i0.51867

SANTOS, I. C.; ALMEIDA, A. A. F.; ANHERT, D.; CONCEIÇÃO, A. S.; PIROVANI, C. P.; PIRES, J. L.; VALLE, R. R.; BALIGAR, V. C. Molecular, physiological and biochemical responses of Theobroma cacao L. genotypes to soil water deficit. PLoS One, 9(12), 2014. https://doi.org/10.1371/journal.pone.0115746

SMIRNOFF, N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist, 125:27-58, 1993. https://doi.org/10.1111/j.1469-8137.1993.tb03863.x

SOUZA, D. C. L. Técnicas moleculares para caracterização e conservação de plantas medicinais e aromáticas: uma revisão. Revista Brasileira de Plantas Medicinais, 17(3):495-503, 2015. https://doi.org/10.1590/1983-084X/13_071

VALLIYODAN, B.; NGUYEN, H. T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current opinion in plant biology, 9(2):189-195, 2006. https://doi.org/10.1016/j.pbi.2006.01.019

WANG, Y.; SUO, B.; ZHAO, T.; QU, X.; YUAN, L.; ZHAO, X.; ZHAO, H. Effect of nitric oxide treatment on antioxidant responses and psbA gene expression in two wheat cultivars during grain filling stage under drought stress and rewatering. Acta Physiologiae Plantarum, 33:1923-1932, 2011. https://doi.org/10.1007/s11738-011-0740-x

ZERAIK, A. E.; SOUZA, F. S.; FATIBELLO-FILHO, O. Desenvolvimento de um spot test para o monitoramento da atividade da peroxidase em um procedimento de purificação. Química Nova, 31(4):731-734, 2008. https://doi.org/10.1590/S0100-40422008000400003

ZHU, Z.; WEI, G.; LI, J.; QIAN, Q.; YU, J. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167(3):527-533, 2004. https://doi.org/10.1016/j.plantsci.2004.04.020

Baccharis trimera (Less.) DC responses to water restriction

Descargas

Publicado

2021-07-01

Cómo citar

NAVA, F. F. de M.; LUZ, V. C. da; STEMPKOWSKI, L. A.; GOTZ, L. F.; TONIAL, F.; CARGNELUTTI, D. Respuestas de Baccharis trimera (Less.) a la restricción de agua. Revista Verde de Agroecologia e Desenvolvimento Sustentável, [S. l.], v. 16, n. 3, p. 229–237, 2021. DOI: 10.18378/rvads.v16i3.8360. Disponível em: https://gvaa.com.br/revista/index.php/RVADS/article/view/8360. Acesso em: 20 may. 2024.

Número

Sección

CIENCIAS AGRARIAS