Respostas de Baccharis trimera (Less.) a restrição de água
DOI:
https://doi.org/10.18378/rvads.v16i3.8360Palavras-chave:
Estiagem, Planta medicinal, Estresse oxidativo, Bioquímica, ProlinaResumo
Alterações climáticas podem causar desequilíbrios nas plantas. Baccharis trimera é uma espécie frequentemente encontrada em condições adversas e apresenta propriedades medicinais e para uso na agricultura. Assim, objetivou-se avaliar as respostas bioquímicas e fisiológicas desta planta em níveis de restrição de água (RA). Amostras de B. trimera foram identificadas e coletadas em Erechim - RS e propagadas em casa de vegetação. Quando aclimatadas foram submetidas a 0, 25, 75 e 100% de RA, determinada de acordo com a saturação de água no solo por capilaridade. Após 30 dias de tratamento foram determinadas respostas fisiológicas: crescimento e biomassa fresca e seca; e respostas bioquímicas: atividade de enzimas superóxido dismutase (SOD), guaiacol peroxidase (GP) e ascorbato peroxidase (APX), conteúdo de prolina, proteína e peróxido de hidrogênio, e peroxidação de lipídeos. Os dados foram submetidos a análises de regressão e correlação de Pearson. A RA média de 27,37% induziu aumento nos parâmetros fisiológicos avaliados, porém o crescimento das raízes foi prejudicado em condições de RA acima de 50%. Com o aumento na RA houve o aumento na atividade das enzimas SOD na parte aérea e de APX na raiz. Em condição de baixa RA verificou-se a manutenção do conteúdo de prolina. Portanto, com baixos níveis de RA, em torno de 27%, B. trimera tem aumento no crescimento de raiz e na biomassa da parte aérea e raiz. Prolina, SOD e APX são uma via de eliminação do estresse gerado pela RA em B. trimera.
Downloads
Referências
AHMED, N.; WANG, G.; OLUWAFEMI, A.; MUNIR, S.; HU, Z. Y.; SHAKOOR, A.; IMRAN, M. A. Temperature trends and elevation dependent warming during 1965–2014 in headwaters of Yangtze River, Qinghai Tibetan Plateau. Journal of Mountain Science, 17:556-571, 2020. https://doi.org/10.1007/s11629-019-5438-3
AMBRIZZI, T.; ARAÚJO, M. Sumário Executivo do Volume 1 - Base Científica das Mudanças Climáticas. Contribuição do Grupo de Trabalho 1 para o 1º Relatório de Avaliação Nacional do Painel Brasileiro de Mudanças Climáticas. PBMC, Rio de Janeiro, 2012.
BASU, M.; SHAW, R. Water policy, climate change and adaptation in South Asia. International Journal of Environmental Studies, 70:175-191, 2013. https://doi.org/10.1080/00207233.2013.781736
BATES, L. S.; WALDREN, R. P.; TEARE, I. D. Rapid determination of free proline for water-stress studies. Plant and Soil, 39:205-207, 1973. https://doi.org/10.1007/BF00018060
BENITEZ, L. C.; VIGHI, I. L.; AULER, P. A.; AMARAL, M. N.; MORAES, G. P.; RODRIGUES, G. S.; MAIA, L. C.; MAGALHÃES JUNIOR, A. M; BRAGA, E. J. B. Correlation of proline content and gene expression involved in the metabolism of this amino acid under abiotic stress. Acta Physiologiae Plantarum, 38(267):1-12, 2016. https://doi.org/10.1007/s11738-016-2291-7
BOARETTO, L. F.; CARVALHO, G.; BORGO, L.; CRESTE, S.; LANDELL, M. G.; MAZZAFERA, P.; AZEVEDO, R. A. Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiology and Biochemistry, 74:165-175, 2014. https://doi.org/10.1016/j.plaphy.2013.11.016
BONA, C. M. Estaquia, calagem e sombreamento de carqueja. Dissertation, Federal University of Paraná, Curitiba, 2002, 81p.
BOWNE, J.; BACIC, A.; TESTER, M.; ROESSNER, U. Abiotic Stress and Metabolomics. Annual Plant Reviews, 43:61-85, 2018. https://doi.org/10.1002/9781119312994.apr0463
BRADFORD, M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2):248-254, 1976. https://doi.org/10.1016/0003-2697(76)90527-3
CAMPOS, M. K. F.; CARVALHO, K.; SOUZA, F. S.; MARUR, C. J.; PEREIRA, L. F. P.; BESPALKOK-FILHO, J. C.; VIEIRA, L. G. E. Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environmental and Experimental Botany, 72(2):242-250, 2011. https://doi.org/10.1016/j.envexpbot.2011.03.009
CHEN, C. T.; KAO, C. H. Osmotic stress and water stress have opposite effects on putrescine and proline production in excised rice leaves. Plant Growth Regulation, 13:197-202, 1993.
EL-MOSHATY, F. I. B.; PIKE, S. M.; NOVACKY, A. J.; SEHGAL, O. P. Lipid peroxidation and superoxide production in cowpea (Vigna unguiculata) leaves infected with tobacco ringspot virus or southern bean mosaic virus. Physiological Molecular Plant Pathology 43(2):109-119, 1993. https://doi.org/10.1006/pmpp.1993.1044
FAROOQ, M.; WAHID, A.; KOBAYASHI, N.; FUJITA, D.; BASRA, S. M. A. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29:185-212, 2009. https://doi.org/10.1051/agro:2008021
GHAFFARI, H.; TADAYON, M. R.; NADEEM, M.; CHEEMA, M.; RAZMJOO, J. Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress. Acta Physiologiae Plantarum, 41(23):1-13, 2019. https://doi.org/10.1007/s11738-019-2815-z
GHORECHA, V.; PATEL, K.; INGLE, S.; SUNKAR, R.; KRISHNAYYA, N. S. R. Analysis of biochemical variations and microRNA expression in wild (Ipomoea campanulata) and cultivated (Jacquemontia pentantha) species exposed to in vivo water stress. Physiology and Molecular Biology of Plants, 20(1):57-67, 2014. https://doi.org/10.1007/s12298-013-0207-1
GIANNOPOLITIS, C. N.; RIES, S. K. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiology, 59(2):315-318, 1997. https://doi.org/10.1104/pp.59.2.315
GILL, S. S.; TUTEJA, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12):909-930, 2010. https://doi.org/10.1016/j.plaphy.2010.08.016
HAMEED, A.; BIBI, N.; AKHTER, J.; IQBAL, N. Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiology and Biochemistry, 49(2):178-185, 2011. https://doi.org/10.1016/j.plaphy.2010.11.009
HOJATI, M.; MODARRES-SANAVY, A. S. M.; KARIMI, M.; GHANATI, F. Responses of growth and antioxidant systems in Carthamus tinctorius L. under water deficit stress. Acta Physiologiae Plantarum, 33:105-112, 2011. https://doi.org/10.1007/s11738-010-0521-y
JALEEL, C. A.; SANKAR, B.; MURALI, P. V.; GOMATHINAYAGAM, M.; LAKSHMANAN, G. M.; PANNEERSELVAM, R. Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus: impacts on ajmalicine accumulation. Colloids and Surfaces Biointerfaces, 62(1):105-111, 2008. https://doi.org/10.1016/j.colsurfb.2007.09.026
LORETO, F.; VELIKOVA, V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology, 127(4):1781-1787, 2001. https://doi.org/10.1104/pp.010497
LEUNG, D. W. M. Studies of Catalase in Plants Under Abiotic Stress. Antioxidants and Antioxidant Enzymes in Higher Plants. In: GUPTA D., PALMA J., CORPAS F. (eds) Antioxidants and Antioxidant Enzymes in Higher Plants. Springer, Cham. 1(1):27-39, 2018. https://doi.org/10.1007/978-3-319-75088-0_2
MAROSTICA, T. F.; CAZAROLLI, L. H.; MOURA, G. S.; LUZ, V. C. D.; GUIMARÃES, E. A. C. M.; CARGNELUTTI, D. Does Allium sativum L. tolerate water déficit? Scientific Electronic Archives, 12(6):13-51, 2019. https://doi.org/10.36560/1262019963
MITTLER, R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9):405-410, 2002. https://doi.org/10.1016/S1360-1385(02)02312-9
MOURA, A. R.; NOGUEIRA, R. J. M. C.; SILVA, J. A. A.; LIMA, T. V. Relações hídricas e solutos orgânicos em plantas jovens de Jatropha curcas L. sob diferentes regimes hídricos. Ciência Florestal, 26(2):345-354, 2016. https://doi.org/10.5902/1980509822735
MOURA, G. S.; FRANZENER, G.; STANGARLIN, J. R.; SCHWAN-STRADA, K. R. F. Atividade antimicrobiana e indutora de fitoalexinas do hidrolato de carqueja [Baccharis trimera (Less.) DC.]. Revista Brasileira de Plantas Medicinais, 16(2):309-315, 2014. https://doi.org/10.1590/1983-084X/10_121
NEILL, S. J.; DESIKAN, R.; CLARKE, A.; HURST, R. D.; HANCOCK, J. T. Hydrogen peroxide and nitric oxide as signaling molecules in plants. Journal of Experimental Botany, 53(372)1237-1247, 2002. https://doi.org/10.1093/jexbot/53.372.1237
NOWAK, M.; KLEINWÄCHTER, M.; MANDERSCHEID, R.; WEIGEL, H. J.; SELMAR, D. Drought stress increases the accumulation of monoterpenes in sage (Salvia officinalis) an effect that is compensated by elevated carbon dioxide concentration. Journal of Applied Botany and Food Quality, 83(2):133-136, 2010.
PETRIDIS, A.; THERIOS, I.; SAMOURIS, G.; KOUNDOURAS, S.; GIANNAKOULA, A. Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiology and Biochemistry, 60(1):1-11, 2012. https://doi.org/10.1016/j.plaphy.2012.07.014
PINHEIRO, H. A.; DA MATTA, F. M.; CHAVES, A. R. M.; LOUREIRO, M. E.; DUCATTI, C. Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Annals of Botany, 96(1):101-108, 2005. https://doi.org/10.1093/aob/mci154
PLANCHET, E.; RANNOU, O.; RICOULT, C.; BOUTET-MERCEY, S.; MAIA-GRONDARD, A.; LIMAMI, A. M. Nitrogen metabolism responses to water deficit act through both abscisic acid (ABA)-dependent and independent pathways in Medicago truncatula during post-germination. Journal of Experimental Botany, 62(1):605-615, 2011. https://doi.org/10.1093/jxb/erq294
PRICE, A. H.; STEELE, K. A.; GORHAM, J.; BRIDGES, J. M.; MOORE, B. J.; EVANS, J. L.; RICHARDSON, P.; JONES, R. G. W. Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes: I. Root distribution, water use and plant water status. Field Crop Research, 76(1):11-24, 2002. https://doi.org/10.1016/S0378-4290(02)00012-6
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2020. https://www.R-project.org/.
RABELO, A. C. S.; COSTA, D. C. A review of biological and pharmacological activities of Baccharis trimera. Chemico-Biological Interactions, 296:65-75, 2018. https://doi.org/10.1016/j.cbi.2018.09.002
REDDY, A. R.; CHAITANYA, K. V.; VIVEKANANDAN, M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11):1189-1202, 2004. https://doi.org/10.1016/j.jplph.2004.01.013
RIOBA, N. B.; ITULYA, F. M.; SAIDI, M.; DUDAI, N.; BERNSTEIN, N. Effects of nitrogen, phosphorus and irrigation frequency on essential oil content and composition of sage (Salvia officinalis L.). Journal of Applied Research on Medicinal and Aromatic Plants, 2(1):21-29, 2015. https://doi.org/10.1016/j.jarmap.2015.01.003
SANCHEZ, F. O.; SILVA, R. V.; FERREIRA, R. V.; CAMPOS, C. A. A. Climate change in the Triângulo Mineiro region – Brazil. Revista Brasileira de Climatologia, 21(21):570-587, 2017. https://doi.org/10.5380/abclima.v21i0.51867
SANTOS, I. C.; ALMEIDA, A. A. F.; ANHERT, D.; CONCEIÇÃO, A. S.; PIROVANI, C. P.; PIRES, J. L.; VALLE, R. R.; BALIGAR, V. C. Molecular, physiological and biochemical responses of Theobroma cacao L. genotypes to soil water deficit. PLoS One, 9(12), 2014. https://doi.org/10.1371/journal.pone.0115746
SMIRNOFF, N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist, 125:27-58, 1993. https://doi.org/10.1111/j.1469-8137.1993.tb03863.x
SOUZA, D. C. L. Técnicas moleculares para caracterização e conservação de plantas medicinais e aromáticas: uma revisão. Revista Brasileira de Plantas Medicinais, 17(3):495-503, 2015. https://doi.org/10.1590/1983-084X/13_071
VALLIYODAN, B.; NGUYEN, H. T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current opinion in plant biology, 9(2):189-195, 2006. https://doi.org/10.1016/j.pbi.2006.01.019
WANG, Y.; SUO, B.; ZHAO, T.; QU, X.; YUAN, L.; ZHAO, X.; ZHAO, H. Effect of nitric oxide treatment on antioxidant responses and psbA gene expression in two wheat cultivars during grain filling stage under drought stress and rewatering. Acta Physiologiae Plantarum, 33:1923-1932, 2011. https://doi.org/10.1007/s11738-011-0740-x
ZERAIK, A. E.; SOUZA, F. S.; FATIBELLO-FILHO, O. Desenvolvimento de um spot test para o monitoramento da atividade da peroxidase em um procedimento de purificação. Química Nova, 31(4):731-734, 2008. https://doi.org/10.1590/S0100-40422008000400003
ZHU, Z.; WEI, G.; LI, J.; QIAN, Q.; YU, J. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167(3):527-533, 2004. https://doi.org/10.1016/j.plantsci.2004.04.020