Taro production, phytomass input by Sesbania and Flemingia and improvement in soil fertility in agroforestry systems in floodplains
DOI:
https://doi.org/10.18378/rvads.v17i1.9073Keywords:
Calophyllum brasiliense, Green manure, Soil fertility, Water resources, Climatic changesAbstract
Floodplains were the first deforested areas for agriculture use all over the world. In Brazil these areas can be restored by the growth of guanandi Calophyllum brasiliense, a slow-growing native forest species adapted to flooding. The aims of this study were to: (i) evaluate the taro, Colocasia esculenta, management under two agroforestry systems (AFS) (Simple and Biodiverse) in succession to a reforestation with guanandi, (ii) evaluate the contribution of macronutrients from the green manure Flemingia macrophylla and Sesbania virgata, both managed using pruning for green manure in the respective AFSs, and (iii) the effects on soil nutrients levels compared to monoculture of guanandi (control). The randomized block was designed with eight replication and 216.0 m² plots with four rows of six guanandi trees in each line. In the simple AFS (SAFS), the taro was intercropped with Flemingia and in the biodiverse AFS (BAFS), Sesbania, banana shrub (Musa sp.), edible palm (Euterpe edulis) and fourteen species of native trees were included. Production was evaluated in seasons with high rainfall and water scarcity. With floods the taro has produced around 15 Mg ha-1 of marketable corms in the SAFS and 9 Mg ha-1 in the BAFS, but the drought has made commercial production unfeasible, with no differences between cormels and corms planting. However, enough rhizomes were harvested for a new planting. Flemingia has accumulated 17 Mg ha-1 of fresh matter and Sesbania contributed with 2 Mg ha-1. Soil pH and macronutrient content, especially K, were significantly higher in AFSs areas compared to guanandi monoculture.
Downloads
References
ALTIERI, M. A.; NICHOLLS, C. I.; HENAO, A.; LANA, M. A. Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development, v. 35, p. 869–890, 2015. https://doi.org/10.1007/s13593-015-0285-2
BRASIL, L. S. C. de A.; OLIVEIRA, R.R. About agricultural manuals, gardens and coffee plantations: mosaics and landscape transformation in the Paraiba do Sul Valley, Brazil. HALAC – Historia Ambiental, Latinoamericana y Caribeña, v.10, n.1, p. 278-305, 2020. https://doi.org/10.32991/2237-2717.2020v10i1.p278-305
CIIAGRO, Centro Integrado de Informações Agrometeorológicas. Monitoramento agrometeorológico e climático. 2015.
COUTINHO, M. P.; CARNEIRO, J. G. A.; BARROSO, D. G.; RODRIGUES, L.A.; FIGUEIREDO, F. A. M. M. A.; MENDONÇA, A. V. R.; NOVAES, A. B. Crescimento de mudas de Sesbania virgata (Cav.) Pers. plantadas em uma área degradada por extração de argila. Floresta, v. 35, n. 2, 231-239, 2005. http://dx.doi.org/10.5380/rf.v35i2.4608
DEL-RIO, G.; RÊGO, M. A.; SILVEIRA, L. F. A Multiscale Approach Indicates a Severe Reduction in Atlantic Forest Wetlands and Highlights that São Paulo Marsh Antwren Is on the Brink of Extinction. PLoS ONE, v. 10, n. 3, p. e0121315, 2015. https://doi.org/10.1371/journal.pone.0121315
DEVIDE, A. C. P.; CASTRO, C. M. C.; RIBEIRO, R. L. D. Crescimento do guanandi e produção de mandioca e araruta em sistemas agroflorestais. Revista Verde de Agroecologia e Desenvolvimento Sustentável, v. 14, n. 2, p. 303 – 311, 2019. https://doi.org/10.18378/rvads.v14i2.6306
DONAGEMA, G. K.; CAMPOS, D. V. B.; CALDERARO, S. B.; TEIXEIRA, W. G.; VIANA, J. H. M. (orgs.). Manual de métodos de análise de solos. 2.ed. rev. Rio de Janeiro: Embrapa Solos, Documentos, 132: 230p, 2011.
FISCHER, E. M.; KNUTTI, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nature Climate Change, v. 5, p. 560–564, 2015. https://doi.org/10.1038/nclimate2617
GLIESSMAN, S. Defining Agroecology. Agroecology and Sustainable Food Systems, v. 42, n. 6, p. 599-600, 2018. https://doi.org/10.1080/21683565.2018.1432329
GONDIM, A. R. O.; PUIATTI, M.; CECON, P. R.; FINGER, F. L. Crescimento, partição de fotoassimilados e produção de rizomas de taro cultivado sob sombreamento artificial. Horticultura brasileira, v. 25, n. 3, p. 418-428, 2007. https://doi.org/10.1590/S0102-05362007000300019
GONDIM, A. R. O.; PUIATTI, M.; FINGER, F. L.; CECON, P. R. Artificial shading promotes growth of taro plants. Pesquisa Agropecuária Tropical, v. 48, n. 2, p. 83-89, 2018. https://doi.org/10.1590/1983-40632018v4851355
HAWKINS, D. M.; WEISBERG, S. Combining the box-cox power and generalised log transformations to accommodate nonpositive responses in linear and mixed-effects linear models. South African Statistical Journal 51(2): 317-328, 2017. https://hdl.handle.net/10520/EJC-bd05f9440
HEREDIA ZÁRATE, N. A.; VIEIRA, M. C.; GRACIANO, J. D.; GIULIANI, A. R.; HELMICH, M; GOMES, H. E. Produção e renda bruta de quatro clones de taro cultivados em Dourados, Estado do Mato Grosso do Sul. Acta Scientiarum. Agronomy, v. 31, p. 301-305, 2009. https://doi.org/10.1590/S1807-86212009000200017
KERR, R. B.; MADSEN, S.; STÜBER, M.; LIEBERT, J.; ENLOE, S.; BORGHINO, N.; PARROS, P.; MUTYAMBAI, D. M.; PRUDHON, M.; WEZEL, A. Can agroecology improve food security and nutrition? A review, Global Food Security, v. 29, 2021. https://doi.org/10.1016/j.gfs.2021.100540
MANNER, H. I.; TAYLOR, M. Farm and Forest Production and Marketing Profile for Taro (Colocasia esculenta). In: Elevitch C.R. (ed.) Specially Crops for Pacific Islands Agroforestry. Permanent Agriculture Resources (PAR), Holualoa, Hawai´i, 2011.
MICCOLIS, A.; PENEREIRO, F. M.; VIEIRA, D. L. M.; MARQUES, H. R.; HOFFMANN, M. R. Restoration through agroforestry: options for livelihoods with conservation in the Cerrado and Caatinga biomes in Brazil. Experimental Agriculture, v. 55, n. S1, p. 208-225, 2019. https://doi.org/10.1017/S0014479717000138
MITCHELL, S. A. The status of wetlands, threats and the predicted effect of global climate change: the situation in Sub-Saharan Africa. Aquatic Sciences, v. 75, p. 95–112, 2013. https://doi.org/10.1007/s00027-012-0259-2
MÓGOR, Á.F., ÖRDÖG, V., LIMA, G.P.P. et al. Biostimulant properties of cyanobacterial hydrolysate related to polyamines. J Appl Phycol, v. 30, p. 453–460, 2018. https://doi.org/10.1007/s10811-017-1242-z
OLIVEIRA, F. L.; GUERRA, J. G. M.; ALMEIDA, D. L.; RIBEIRO, R. L. D.; SILVA, E. D.; SILVA, V. V.; ESPINDOLA, J. A. A. Desempenho de taro em função de doses de cama de aviário, sob sistema orgânico de produção. Horticultura Brasileira, v. 26, p. 149-153, 2008. https://doi.org/10.1590/S0102-05362008000200004
OLIVEIRA, F.L.; ARAUJO, A. P.; GUERRA, J. G. M. Crescimento e acumulação de nutrientes em plantas de taro sob níveis de sombreamento artificial. Horticultura Brasileira, v. 29, n. 3, p. 291-298, 2011. https://doi.org/10.1590/S0102-05362011000300006
OLIVEIRA, V. C.; JOLY, C. A. Flooding tolerance of Calophyllum brasiliense Camb. (Clusiaceae): morphological, physiological and growth responses. Trees, v. 24, p. 185-193, 2010. https://doi.org/10.1007/s00468-009-0392-2
OPPONG, F. K.; OSEI-BONSU, K.; AMOAH, F. M.; ACHEAMPONG, K. Potential use of Flemingia macrophylla as mulch for managing weeds in young cocoa in Ghana. Ghana Journal of Agricultural Science, v. 31, p. 67-72, 1998. https://doi.org/10.4314/gjas.v31i1.1947
POULIOT, M.; BAYALA, J.; RÆBILD, A. Testing the shade tolerance of selected crops under Parkia biglobosa (Jacq.) Benth. in an agroforestry parkland in Burkina Faso, West Africa. Agroforest Systems, v. 85, p. 477–488, 2012. https://doi.org/10.1007/s10457-011-9411-6
PUIATTI, M.; KATSUMOTO, R.; PEREIRA, F. H. F.; BARRELLA, T. P. Crescimento de plantas e produção de rizomas de taro 'Chinês' em função do tipo de muda. Horticultura Brasileira, v. 21, n. 1, p. 110-115, 2003. https://doi.org/10.1590/S0102-05362003000100023
QUEIROZ, L. R.; COELHO, F. C.; BARROSO, D. G. Cultivo de milho no sistema de aléias com leguminosas perenes. Ciência e Agrotecnologia, v. 31, n. 5, p. 1303-1309, 2007. https://doi.org/10.1590/S1413-70542007000500005
SALMI, A. P.; GUERRA, J. G. M.; ABBOUD, A. C. S.; GONÇALVES JÚNIOR, M. Avaliação agronômica da rebrota, dinâmica de decomposição e liberação de nutrientes de flemingia (Flemingia macrophylla (Willd.) Kuntze ex Merr.). Revista Ceres, v. 60, n.5, p. 735-743, 2013. https://doi.org/10.1590/S0034-737X2013000500020
SANOU, J.; BAYALA, J.; BAZIÉ, P.; TEKLEHAIMANOT, Z. Photosynthesis and biomass production by millet (Pennisetum glaucum) and taro (Colocasia esculenta) grown under baobab (Adansonia digitata) and néré (Parkia biglobosa) in an agroforestry parkland system of Borkina Faso (West Africa). Experimental Agriculture, v. 48, n. 2, p. 283-300, 2012. https://doi.org/10.1017/S0014479712000014
SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; LUMBRERAS, J. F.; COELHO, M. R.; ALMEIDA, J. Á.; CUNHA, T. J. F.; OLIVEIRA, J. B. Sistema brasileiro de classificação de solos. 3ª ed. Brasília: Embrapa, 353 p, 2013.
SCHWEIZER, D.; BRACALION, P. H. S. Rescue tree monocultures! A phylogenetic ecology approach to guide the choice of seedlings for enrichment planting in tropical monoculture plantations. Restoration Ecology, v. 28, n. 1, p. 166–172, 2020. https://doi.org/10.1111/rec.13064
SILESHI, G.; MAGHEMBE, J.A.; RAO, M.R.; OGOL, C.K.P.O.; SITHANANTHAM, S. Insects feeding on Sesbania species in natural stands and agroforestry systems in Southern Malawi. Agroforestry systems, v. 49, n.1, p. 41–52, 2000. https://doi.org/10.1023/A:1006378713271
SILVA, D. G. O.. Farming Systems in Fazenda Coruputuba, Pindamonhangaba, SP. 2021. (Cartas, mapas ou similares/Mapa).
VALLEJO, M.; CASAS, A.; PÉREZ-NEGRÓN, E.; MORENO-CALLES, A. I.; HERNÁNDEZ-ORDOÑEZ, O.; TELLEZ, O.; DÁVILA, P. Agroforestry systems of the lowland alluvial valleys of the Tehuacán-Cuicatlán Biosphere Reserve: an evaluation of their biocultural capacity. Journal of Ethnobiology and Ethnomedicine, v.11, n. 8, 2015. https://doi.org/10.1186/1746-4269-11-8
WREGE, M. S.; FRITZSONS, E.; KALIL FILHO, A. N.; AGUIAR, A. V. Regiões com potencial climático para plantio comercial do guanandi no Brasil. Revista do Instituto Florestal, v. 29 n. 1 p. 7-17, 2017. https://doi.org/10.24278/2178-5031.201729101
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Antonio Carlos Pries Devide et al.
This work is licensed under a Creative Commons Attribution 4.0 International License.