Deshidratación osmótica de rodajas de papaya (Carica papaya L.)

Autores/as

DOI:

https://doi.org/10.18378/rvads.v15i2.7811

Palabras clave:

Carica papaya L., Microonda, El secado

Resumen

La aplicación de tecnologías como la deshidratación osmótica, promueve la reducción del agua del producto en períodos cortos y la mejora de sus características sensoriales. Una vez que se observó la influencia de las condiciones en la eficiencia del proceso de deshidratación osmótica de las frutas, el objetivo de este estudio fue evaluar el efecto de la temperatura y las concentraciones de sacarosa y xilitol en la cinética de deshidratación osmótica, y los efectos del secado complementario por microondas. sobre las características físicas y químicas de las rodajas de papaya. El método de análisis de superficie de respuesta se aplicó a través de un diseño factorial rotacional completo de 2² con 4 puntos axiales y 3 repeticiones en el punto central, totalizando 11 experimentos para cada agente osmótico, con los cuales fue posible evaluar los efectos de la concentración del agente osmótica (sacarosa o xilitol) y temperatura, en la pérdida de agua de las rodajas de papaya Se encontró que la condición ideal para llevar a cabo el proceso era la concentración de Brix del agente osmótico a 50 °C a una temperatura de 30 °C. Las rodajas sometidas a deshidratación osmoconvectiva en estas condiciones se secaron en microondas y se evaluaron sus características físicas y químicas. El uso de xilitol como agente osmótico fue más eficiente que la sacarosa, proporcionando una mayor reducción en el agua, influyendo significativamente en la retención del contenido de vitamina C después del secado por microondas y presentando un menor contenido de agua.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Shênia Santos Monteiro, Universidade Federal de Campina Grande

Engenheira de Alimentos (2013 - 2018), pela Universidade Federal de Campina Grande, Campus I, Campina Grande - PB. Atualmente Mestranda em Engenharia Agrícola/Areá: Processamento e Armazenamento de Produtos Agrícolas (2019).

Shirley Santos Monteiro, Universidade Federal de Campina Grande

Bacharel em Agroecologia pela Universidade Federal da Paraíba (UFPB) Centro de Ciências Humanas, Sociais e Agrárias (CCHSA) Campus III, Bananeiras-PB (2011-2016) Mestre em Tecnologia Agroalimentar (PPGTA) pela Universidade Federal da Paraíba (UFPB) Centro de Ciências Humanas, Sociais e Agrárias (CCHSA) Campus III, Bananeiras-PB (2016-2018). Atualmente Doutoranda em Engenharia Agrícola pela Universidade Federal de Campina Grande (UFCG) e cursando o Técnico em Agropecuária pelo Colégio Agrícola Vidal de Negreiros (CAVN).

Citas

AIRES, K. L. C. de A., SILVA, W. P. da, AIRES, J. E. de FARIAS, SILVA JÚNIOR, A. F. da, SILVA, C. M. D. P. da S. Convective drying of osmotically dehydrated apples described by three-dimensional numerical solution of the diffusion equation with analysis of water effective diffusivity spatial distribution. Drying Technology, v. 37, n. 16, p. 2034-2046, 2019. 10.1080/07373937.2018.1549565

AZUARA, E.; BERITAIN, C. I.; GARCIA, H. S. Development of a mathematical model to predict kinetics of osmotic dehydration. Journal of food science and technology (Mysore), v. 29, n. 4, p. 239-242, 1992.

BARRAGÁN-IGLESIAS, J.; RODRÍGUEZ-RAMÍREZ, J.; SABLANI, S. S.; MÉNDEZ-LAGUNAS, L. L. Texture analysis of dried papaya (Carica papaya L., cv. Maradol) pretreated with calcium and osmotic dehydration. Drying Technology, v. 37, n. 7, p. 906-919, 2019. 10.1080/07373937.2018.1473420

BROCHIER, B.; INÁCIO, J. M.; NOREÑA, C. P. Z. Study of osmotic dehydration of kiwi fruit using sucrose solution. Brazilian Journal of Food Technology, v. 22, 2019. 10.1590/1981-6723.14618

CASTRO, A.; MAYORGA, E.; MORENO, F. Mathematical modelling of convective drying of fruits: A review. Journal of Food Engineering, v. 223, p. 152-167, 2018. 10.1016/j.jfoodeng.2017.12.012

CHANG, S. K.; ALASALVAR, C.; SHAHIDI, F. Review of dried fruits: Phytochemicals, antioxidant efficacies, and health benefits. Journal of Functional Foods, v. 21, p. 113-132, 2016. 10.1016/j.jff.2015.11.034

CHIU, M.; THAM, H.; LEE, J. Osmotic dehydration kinetics of Terung Asam (Solanum lasiocarpum Dunal). International Food Research Journal, v. 24, n. 6, p. 2365-2370, 2017.

CICHOWSKA, J.; FIGIEL, A.; STASIAK-RÓŻAŃSKA, L.; WITROWA-RAJCHERT, D. Modeling of osmotic dehydration of apples in sugar alcohols and dihydroxyacetone (DHA) Solutions. Foods, v. 8, n. 1, p. 20, 2019. 10.3390/foods8010020

DEHGHANNYA, J.; GORBANI, R.; GHANBARZADEH, B. Effect of ultrasound‐assisted osmotic dehydration pretreatment on drying kinetics and effective moisture diffusivity of mirabelle plum. Journal of food processing and preservation, v. 39, n. 6, p. 2710-2717, 2015. 10.1111/jfpp.12521

DEHGHANNYA, J.; HOSSEINLAR, S.-H.; HESHMATI, M. K. Multi-stage continuous and intermittent microwave drying of quince fruit coupled with osmotic dehydration and low temperature hot air drying. Innovative food science and emerging technologies, v. 45, p. 132-151, 2018. 10.1016/j.ifset.2017.10.007

DEMIRAY, E.; SEKER, A.; TULEK, Y. Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat and Mass Transfer, v. 53, n. 5, p. 1817-1827, 2017. 10.1007/s00231-016-1943-x

FAN, K.; ZHANG, M.; MUJUMDAR, A. S. Recent developments in high efficient freeze-drying of fruits and vegetables assisted by microwave: A review. Critical reviews in food science and nutrition, v. 59, n. 8, p. 1357-1366, 2019. 10.1080/10408398.2017.1420624

FERREIRA, J. P. D. L.; CASTRO, D. S. D.; MOREIRA, I. D. S.; SILVA, W. P. D.; DE FIGUEIRÊDO, R. M.; QUEIROZ, A. J. D. M. Convective drying kinetics of osmotically pretreated papaya cubes. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 24, n. 3, p. 200-208, 2020. 10.1590/1807-1929/agriambi.v24n3p200-208

GIAMPIERI, F.; TULIPANI, S.; ALVAREZ-SUAREZ, J. M.; QUILES, J. L.; MEZZETTI, B.; BATTINO, M. The strawberry: composition, nutritional quality, and impact on human health. Nutrition, v. 28, n. 1, p. 9-19, 2012. 10.1016/j.nut.2011.08.009

IAL. Normas Análiticas: Métodos químicos e físicos para análise de alimentos: 1020 p. 2008.

ISLAM, M. Z.; DAS, S.; MONALISA, K.; SAYEM, A. S. M. Influence of Osmotic Dehydration on Mass Transfer Kinetics and Quality Retention of Ripe Papaya (Carica papaya L) during Drying. AgriEngineering, v. 1, n. 2, p. 220-234, 2019. 10.3390/agriengineering1020016

KANDASAMY, P.; VARADHARAJU, N.; KALEMULLAH, S.; MALADHI, D. Optimization of process parameters for foam-mat drying of papaya pulp. Journal of food science and technology, v. 51, n. 10, p. 2526-2534, 2014. 10.1007/s13197-012-0812-y

KUCNER, A.; KLEWICKI, R.; SÓJKA, M. The influence of selected osmotic dehydration and pretreatment parameters on dry matter and polyphenol content in highbush blueberry (Vaccinium corymbosum L.) fruits. Food and Bioprocess Technology, v. 6, n. 8, p. 2031-2047, 2013. 10.1007/s11947-012-0997-0

KUMAR, C.; JOARDDER, M. U. H.; KARIM, A.; MILLAR, G. J.; AMIN, Z. M. Temperature redistribution modelling during intermittent microwave convective heating. Procedia Engineering, v. 90, p. 544-549, 2014. 10.1016/j.proeng.2014.11.770

LOPES, F. J.; PEREIRA, N. R.. Encolhimento na secagem convectiva de abacaxi com aplicação de micro-ondas variável. Blucher Chemical Engineering Proceedings, v. 2, n. 1, p. 1707-1713, 2015.

MENDONÇA, K. S.; CORRÊA, J. L. G.; JESUS JUNQUEIRA, J. R.; PEREIRA, M. C. D. A.; VILELA, M. B. Optimization of osmotic dehydration of yacon slices. Drying Technology, v. 34, n. 4, p. 386-394, 2016. 10.1080/07373937.2015.1054511

MILLER, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, v. 31, n. 3, p. 426-428, 1959. 10.1021/ac60147a030

MUSSATTO, S. I.; ROBERTO, I. C. Xilitol: Edulcorante com efeitos benéficos para a saúde humana. Revista Brasileira de Ciências Farmacêuticas, v. 38, n. 4, p. 401-413, 2002. 10.1590/S1516-93322002000400003

NAJAFI, A. H.; YUSOF, Y.; RAHMAN, R.; GANJLOO, A.; LING, C. N. Effect of osmotic dehydration process using sucrose solution at mild temperature on mass transfer and quality attributes of red pitaya (Hylocereus polyrhizusis). International Food Research Journal, v. 21, n. 2, 2014.

NUNES, A. C. D.; FIGUEIREDO NETO, A.; NASCIMENTO, I. K. S.; DE OLIVEIRA, F. J. V.; MESQUITA, R. V. C. Armazenamento de mamão formosa revestido à base de fécula de mandioca. Revista de Ciências Agrárias, v. 40, n. 1, p. 254-263, 2017. 10.19084/RCA16048

PAGE, G. E. Factors influencing the maximum rates of air drying shelled corn in thin layers. West Lafayette: Purdue University, 1949. Thesis Doctoral.

PRATES, R. S. Aspectos operacionais do programa de exportação do mamão brasileiro para os Estados Unidos: sete anos de sucesso. MARTINS, D. Dos S.(Ed.), 2005.

PELEG, M. An empirical model for the description of moisture sorption curves. Journal of Food science, v. 53, n. 4, p. 1216-1217, 1988. 10.1111/j.1365-2621.1988.tb13565.x

RILEY, P.; MOORE, D.; AHMED, F.; SHARIF, M. O., WORTHINGTON, H. V. Xylitol‐containing products for preventing dental caries in children and adults. Cochrane Database of Systematic Reviews, n. 3, 2015. 10.1002/14651858.CD010743.pub2

RODRIGUEZ, A.; BRUNO, E.; PAOLA, C.; CAMPAÑONE, L.; MASCHERONI, R. H. Experimental study of dehydration processes of raspberries (Rubus Idaeus) with microwave and solar drying. Food Science and Technology, v. 39, n. 2, p. 336-343, 2019. 10.1590/fst.29117

SANTANA, L. R.; MATSUURA, F. C.; CARDOSO, R. L. Genótipos melhorados de mamão (Carica papaya L.): avaliação sensorial e físico-química dos frutos. Food Science and Technology, v. 24, n. 2, p. 217-222, 2004. 10.1590/S0101-20612004000200010

SANTOS, N. C.; BARROS, S. L.; MONTEIRO, S. S.; SILVA, S. N.; RIBEIRO, V. H. A.; SILVA, V. M. A.; GOMES, J. P.; SANTIAGO, A. M.; LUIZ, M. R.; VIEIRA, D.M.; ARAUJO, R. D.; VILAR, S. B. O.; BARROS, E. R. Kinetics of Drying and Physical-Chemical Quality of Peach cv. Hubimel. Journal of Agricultural Science, v. 11, n. 16, p. 223-232, 2019. 10.5539/jas.v11n16p223

SCHWEIGGERT, R.; STEINGASS, C. B.; MORA, E.; ESQUIVEL, P.; CARLE, R. Carotenogenesis and physico-chemical characteristics during maturation of red fleshed papaya fruit (Carica papaya L.). Food Research International, v. 44, n. 5, p. 1373-1380, 2011. 10.1016/j.foodres.2011.01.029

SHARMA, G. P.; PRASAD, S. Effective moisture diffusivity of garlic cloves undergoing microwave-convective drying. Journal of Food engineering, v. 65, n. 4, p. 609-617, 2004. 10.1016/j.jfoodeng.2004.02.027

SILVA, F. D. A. E.; AZEVEDO, C. D. The Assistat Software Version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research, v. 11, n. 39, p. 3733-3740, 2016.

STATSOFT. Statistica 7.0 Software. StatSoft, Inc Tucksa, 2004.

STROHECKER, R.; HENNING, H. M. Análise de vitaminas: métodos comprovados. Madrid: Paz Montalvo, 1967. 428p.

SULISTYAWATI, I.; VERKERK, R.; FOGLIANO, V.; DEKKER, M. Modelling the kinetics of osmotic dehydration of mango: Optimizing process conditions and pre-treatment for health aspects. Journal of Food Engineering, p. 109985, 2020. 10.1016/j.jfoodeng.2020.109985

UDOMKUN, P.; NAGLE, M.; MAHAYOTHEE, B.; NOHR, D.; KOZA, A.; MULLER, J. Influence of air drying properties on non-enzymatic browning, major bio-active compounds and antioxidant capacity of osmotically pretreated papaya. Food Science and Technology, v. 60, n. 2, p. 914-922, 2015. 10.1016/j.lwt.2014.10.036

VEGA-GÁLVEZ, A.; POBLETE, J.; QUISPE-FUENTES, I.; URIBE, E.; BILBAO-SAINZ, C.; PASTÉN, A. Chemical and bioactive characterization of papaya (Vasconcellea pubescens) under different drying technologies: evaluation of antioxidant and antidiabetic potential. Journal of Food Measurement and Characterization, v. 13, n. 3, p. 1980-1990, 2019. 10.1007/s11694-019-00117-4

WEIBULL, W. Wide applicability. Journal of applied mechanics, v. 103, n. 730, p. 293-297, 1951.

ZERPA-CATANHO, D.; ESQUIVEL, P.; MORA-NEWCOMER, E.; SÁENZ, M. V.; HERRERA, R.; JIMÉNEZ, V. M. Transcription analysis of softening-related genes during postharvest of papaya fruit (Carica papaya L.‘Pococí’hybrid). Postharvest biology and technology, v. 125, p. 42-51, 2017. 10.1016/j.postharvbio.2016.11.002

Desidratação osmótica de fatias de mamão (Carica papaya L.)

Publicado

2020-04-01

Cómo citar

MONTEIRO, S. S.; MONTEIRO, S. S.; SANTOS, N. C.; BARROS, S. L.; PEREIRA, E. M. Deshidratación osmótica de rodajas de papaya (Carica papaya L.). Revista Verde de Agroecologia e Desenvolvimento Sustentável, [S. l.], v. 15, n. 2, p. 183–192, 2020. DOI: 10.18378/rvads.v15i2.7811. Disponível em: https://gvaa.com.br/revista/index.php/RVADS/article/view/7811. Acesso em: 25 nov. 2024.

Número

Sección

INTERDISCIPLINARIAS

Artículos más leídos del mismo autor/a

<< < 1 2 3 > >>