Desafios no controle da dengue em países tropicais: avanços nas vacinas e perspectivas
DOI:
https://doi.org/10.18378/rebes.v14i3.10874Abstract
Os mosquitos são vetores principais de doenças graves, como dengue, chikungunya e malária, com a dengue afetando 50 a 100 milhões de pessoas anualmente. Eles têm um impacto significativo nos ecossistemas e na saúde pública, uma vez que não há tratamentos específicos eficazes para muitas arboviroses. O Aedes aegypti, responsável pela transmissão de várias arboviroses, incluindo dengue, Zika e chikungunya, se destaca pela adaptação a ambientes urbanos. A falta de tratamentos específicos torna crucial a busca por soluções ecológicas e sustentáveis para controlar a proliferação dos mosquitos. Portanto, objetivo desta revisão é analisar os avanços recentes na vacinologia para o controle da dengue. Esta pesquisa é uma revisão qualitativa e descritiva sobre os avanços recentes em vacinas contra dengue e outros arbovírus, com material buscado nas bases SciELO e PubMed usando os termos “dengue vaccine” AND “arbovirus” AND “advances”. Conduzida em agosto de 2024, incluiu artigos originais e gratuitos dos últimos dez anos em português ou inglês, excluindo trabalhos incompletos ou repetidos. O vírus da dengue (DENV) se transmite através de interações entre humanos e mosquitos, com destaque para a transmissão vertical, que permite sua persistência em condições adversas. Estudos mostram que o DENV pode sobreviver e se propagar em diferentes estágios de desenvolvimento dos mosquitos. As vacinas tetravalentes, como CYD-TDV e QDENGA®, representam avanços importantes, mas enfrentam desafios como a amplificação dependente de anticorpos (ADE) e a necessidade de uma resposta imune equilibrada. A eficácia das vacinas é complicada pela competição antigênica entre os quatro sorotipos do vírus, necessitando de mais pesquisa para melhorar segurança e eficácia. A continuidade da pesquisa e a integração de novas tecnologias serão essenciais para desenvolver vacinas mais eficazes e seguras contra a dengue.
Downloads
References
BECKER, Norbert et al. Mosquitoes: identification, ecology and control. Springer Nature, 2020.
BHATT, Samir et al. The global distribution and burden of dengue. Nature, v. 496, n. 7446, p. 504-507, 2013.
BIFANI, Amanda Makha; SIRIPHANITCHAKORN, Tanamas; CHOY, Milly M. Intra-host diversity of dengue virus in mosquito vectors. Frontiers in Cellular and Infection Microbiology, v. 12, p. 888804, 2022.
CALZOLARI, Mattia. Mosquito-borne diseases in Europe: an emerging public health threat. Reports in Parasitology, p. 1-12, 2016.
DANIS‐LOZANO, Rogelio et al. Vertical transmission of dengue virus in Aedes aegypti and its role in the epidemiological persistence of dengue in Central and Southern Mexico. Tropical Medicine & International Health, v. 24, n. 11, p. 1311-1319, 2019.
EGID, Beatrice R. et al. Review of the ecology and behaviour of Aedes aegypti and Aedes albopictus in Western Africa and implications for vector control. Current research in parasitology & vector-borne diseases, v. 2, p. 100074, 2022.
FERREIRA-DE-LIMA, Victor Henrique et al. Silent circulation of dengue virus in Aedes albopictus (Diptera: Culicidae) resulting from natural vertical transmission. Scientific reports, v. 10, n. 1, p. 3855, 2020.
FERREIRA-DE-LIMA, Victor Henrique; LIMA-CAMARA, Tamara Nunes. Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus: a systematic review. Parasites & Vectors, v. 11, p. 1-8, 2018.
GARCÍA-REJÓN, Julián E. et al. Infestação de mosquitos e infecção pelo vírus da dengue em fêmeas de Aedes aegypti em escolas em Mérida, México. The American Journal of Tropical Medicine and Hygiene, v. 84, n. 3, p. 489, 2011.
GUZMAN, Maria G.; ALVAREZ, Mayling; HALSTEAD, Scott B. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Archives of virology, v. 158, p. 1445-1459, 2013.
HALSTEAD, S. B. Global epidemiology of dengue hemorrhagic fever. Southeast Asian J Trop Med Public Health, 1990.
HEINZ, Franz X.; STIASNY, Karin. Flaviviruses and flavivirus vaccines. Vaccine, v. 30, n. 29, p. 4301-4306, 2012.
HUANG, Claire Y.-H. et al. Genetic and phenotypic characterization of manufacturing seeds for a tetravalent dengue vaccine (DENVax). PLoS Neglected Tropical Diseases, v. 7, n. 5, p. e2243, 2013.
INSTITUTO BUTANTAN. Butantan’s dengue vaccine has 79.6% efficacy, partial results from 2-year follow-up show. 2022. Disponível em: https://butantan.gov.br/noticias/butantan%27s-dengue-vaccine-has-79.6-efficacy-partial-results-from-2-year-follow-up-show. Acesso em: 31 ago. 2024.
JUHDI, Isnadiyah et al. Ovitrap Index and Transovarial Transmission Rate of Dengue Virus of Male and Female Aedes aegypti Mosquitoes in Makassar, South Sulawesi, Indonesia. Journal of Tropical Life Science, v. 9, n. 1, 2019.
KALLÁS, Esper G. et al. Live, attenuated, tetravalent Butantan–Dengue vaccine in children and adults. New England Journal of Medicine, v. 390, n. 5, p. 397-408, 2024.
KHAN, MAHNA. Important vector-borne diseases with their zoonotic potential: present situation and future perspective. Bangladesh Journal of Veterinary Medicine, v. 13, n. 2, 2015.
KIRKPATRICK, Beth D. et al. Robust and balanced immune responses to all 4 dengue virus serotypes following administration of a single dose of a live attenuated tetravalent dengue vaccine to healthy, flavivirus-naive adults. The Journal of infectious diseases, v. 212, n. 5, p. 702-710, 2015.
KIRKPATRICK, Beth D. et al. The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a human challenge model. Science translational medicine, v. 8, n. 330, p. 330ra36-330ra36, 2016.
KRAUS, Johanna M.; VONESH, James R. Fluxes of terrestrial and aquatic carbon by emergent mosquitoes: a test of controls and implications for cross-ecosystem linkages. Oecologia, v. 170, p. 1111-1122, 2012.
MARCHI, Serena et al. Emerging and re-emerging arboviral diseases as a global health problem. Public Health: Emerging and Re-emerging Issues. United Kindgom: IntechOpen, p. 25-46, 2018.
MESSINA, Jane P. et al. A global compendium of human dengue virus occurrence. Scientific Data, v. 1, n. 1, p. 1-6, 2014.
MORRISON, Dennis et al. A novel tetravalent dengue vaccine is well tolerated and immunogenic against all 4 serotypes in flavivirus-naive adults. The Journal of infectious diseases, v. 201, n. 3, p. 370-377, 2010.
OSORIO, Jorge E.; WALLACE, Derek; STINCHCOMB, Dan T. A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone. Expert Review of Vaccines, v. 15, n. 4, p. 497-508, 2016.
PUTNAK, J. Robert et al. An evaluation of dengue type-2 inactivated, recombinant subunit, and live-attenuated vaccine candidates in the rhesus macaque model. Vaccine, v. 23, n. 35, p. 4442-4452, 2005.
REINHOLD, Joanna M.; LAZZARI, Claudio R.; LAHONDÈRE, Chloé. Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: a review. Insects, v. 9, n. 4, p. 158, 2018.
ROSEN, Leon; et al. Transovarial transmission of dengue viruses by mosquitoes: Aedes albopictus and Aedes aegypti. The American Journal of Tropical Medicine and Hygiene, v. 32, n. 5, p. 1108-1119, 1983.
ROUNDY, Christopher M. et al. Variation in Aedes aegypti mosquito competence for Zika virus transmission. Emerging infectious diseases, v. 23, n. 4, p. 625, 2017.
SERUFO, José C. et al. Isolation of dengue virus type 1 from larvae of Aedes albopictus in Campos Altos city, State of Minas Gerais, Brazil. [s.l.], p. 503-504, 1993.
STANAWAY, Jeffrey D. et al. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. The Lancet infectious diseases, v. 16, n. 6, p. 712-723, 2016.
TAKEDA. QDENGA Summary of Product Characteristics. 2023a. Disponível em: https://www.ema.europa.eu/en/documents/product-information/qdenga-epar-product-information_en.pdf. Acesso em: 31 ago. 2024.
TAKEDA. Takeda announces voluntary withdrawal of U.S. Biologics License Application (BLA) for Dengue vaccine candidate TAK-003. 2023b. Disponível em: https://www.takeda.com/newsroom/statements/2023/takeda-announces-voluntary-withdrawal-of-US-biologics-license-application-for-dengue-vaccine-candidate-TAK-003/. Acesso em: 31 ago. 2024.
TAUSSIG, Michael J. Antigenic competition. Current Topics in Microbiology and Immunology: Ergebnisse der Mikrobiologie und Immunitätsforschung, p. 125-174, 1973.
THOMAS, Stephen J.; YOON, In-Kyu. A review of Dengvaxia®: development to deployment. Human vaccines & immunotherapeutics, v. 15, n. 10, p. 2295-2314, 2019.
TIAN, Yuan; SETTE, Alessandro; WEISKOPF, Daniela. Cytotoxic CD4 T cells: differentiation, function, and application to dengue virus infection. Frontiers in immunology, v. 7, p. 531, 2016.
VILELA, Ana P. P. et al. Dengue virus 3 genotype I in Aedes aegypti mosquitoes and eggs, Brazil, 2005–2006. Emerging Infectious Diseases, v. 16, n. 6, p. 989, 2010.
WEAVER, Scott C.; VASILAKIS, Nikos. Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infection, genetics and evolution, v. 9, n. 4, p. 523-540, 2009.
WEISKOPF, Daniela et al. The human CD8+ T cell responses induced by a live attenuated tetravalent dengue vaccine are directed against highly conserved epitopes. Journal of virology, v. 89, n. 1, p. 120-128, 2015.
WHITE, Laura J. et al. Defining levels of dengue virus serotype-specific neutralizing antibodies induced by a live attenuated tetravalent dengue vaccine (TAK-003). PLoS Neglected Tropical Diseases, v. 15, n. 3, p. e0009258, 2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Caio Marcos de Matos Pinheiro, Gabriel Patrício Santos de Medeiros, Alice Maria Barbosa Soares, Marina Gervini Wendt, Natasha Mayer Ferreira, Ana Paula Almeida Silva, Matheus Oliveira de Macedo, Gabriela Bruce Figueiredo Tejo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Termo de cess