In silico study of the anti-obesity potential of Baccharis trimera phenolic compounds

Authors

  • Wanderson Fernando Mello de Souza UNIRIO
  • Andrea Regina de Souza Baptista
  • Ricardo Luiz Dantas Machado
  • Cristiane Barbosa Rocha
  • Ricardo Felipe Alves Moreira

DOI:

https://doi.org/10.18378/rebes.v9i1.6223

Keywords:

Epicatechin, Bacharis trimera, non-volatile compounds, flavonoids

Abstract

Obesity is a worldwide public health problem. Regular exercises, balanced diet, allopathic and herbal medicines can be employed in the prevention and treatment of this pathological condition.  Regarding the alternative treatment of obesity using medicinal plants, Baccharis trimera deserves attention due to the anti-obesity properties associated with its methanolic extracts.  This in silico study aims to evaluate in which phenolic compounds of this plant the anti-obesity potential is most remarkable.  According to the results obtained by the employment of some bioinformatics tools, the flavonoid known as epicatechin is probably the most important  anti-obesity principle found in Baccharis trimera.

Downloads

Download data is not yet available.

References

Cercato LM, White PA, Nampo FK, Santos MR, Camargo EA. A systematic review of medicinal plants used for weight loss in Brazil: is there potential for treatment of obesity? J Ethnopharmacol. 2015; 176: 286-96.

Souza SP, Pereira LLS, Souza AA, Santos CD. Inhibition of pancreatic lipase by extracts of Baccharis trimera (Less.) DC., Asteraceae: evaluation of antinutrients and effect on Glycosidases. Revista Brasileira de Farmacognosia. 2011; 13: 12-18.

Da Silva AR, Reginato FZ, Guex CG, Figueredo KC, Araldi IC, De Freitas RB, Boligon AA, Athayde ML, Mazzanti CM, Hübscher GH, Bauermann F. Acute and sub-chronic (28 days) oral toxicity evaluation of tincture Baccharis trimera (Less) Backer in male and female rodent animals. Regulatory Toxicology And Pharmacology. 2016; 74:170-177.

Gonçalves CEP. Carelly alelopathy (Baccharis trimera Less) and action of fungi in capim-annoni(Flat Eragrostis Ness). Dissertation (Master degree). (2014). Federal University of Santa Maria, Santa Maria; 2014. 88p

Silva FG, Januário AH, Pinto JEBP, Nascimento VE, Barizan WS, Sales JF, França SC. Flavonoids content in wild and cultivated populations of Baccharis trimera (Less.) DC.] Collected in dry and humid seasons. Rev. Bras. Pl. Med., Botucatu. 2066; 8:19-25.

Garcia FAO, Mirtes MT, Luce MBT, Lapa AJ, Lima-Landman MTR, Souccar CA. Comparative study of two clerodane diterpenes from Baccharis trimera (Less.) DC. on the influx and mobilization of intracellular calcium in rat cardiomyocytes. Phytomedicine. 2014; 21:1021-1025.

Januário AH, Santos SL, Marcussi MV, Sato DN, Elena J, Sampaio SV, França SC, Soares AM. Neo-clerodane diterpenoid, a new metalloprotease snake venom inhibitor from Baccharis trimera (Asteraceae): anti-proteolytic and anti-hemorrhagic properties. Chemico-biological Interactions. 2004; 150:243-251.

Gene RM, Cartana C, Adzet T, Marin E, Parella T, Canigueral S. Anti-inflammatory and analgesic activity of Baccharis trimera: identification of its active constituents. Planta Medica. 1996; 62: 232-235.

Soicke H, Leng-Peschlow E. Characterisation of Flavonoids from Baccharis trimera and their Antihepatotoxic Properties. Planta Medica. 1987; 1:37-39.

Aboy AL, Apel MA, Debenedetti S, Francescato L, Rosella MA, Henriques AT. Assay of caffeoylquinic acids in Baccharis trimera by reversed-phase liquid chromatography. Journal Of Chromatography. 2013; 1219:147-153.

Kim Y, Machida K, Taga T, Osaki K. Studies on the constituents of Baccharis genistelloides. Chem. Pharm. Bull. 1985; 33:5075-507.

Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH. PUBCHEM substance and compounds databases. 2016; 44:D1202-13.

Goel RK, Singh D, Lagunin A, Poroikov V. PASS-assisted exploration of new therapeutic potential of natural products. Med Chem Res. 2011; 20:1509-1514.

Balakrishnan N, Raj JS, Kandakatla N. In silico studies on new indazole derivatives as GSK-3β inhibitors. Int J Pharm Pharm Sci. 2015; 7:295-299.

Siguemoto SE. Nutritional composition and properties of murici (Byrsonima crassifólia) and moringa (Moringa oleifera) (dissertação de mestrado). São Paulo: Faculdade de Saúde Pública. University of São Paulo; 2013. 125 p

Yun JW. Possible anti-obesity therapeutics from nature-a review. Phytochemistry. 2010; 71:1625-1641.

Downloads

Published

2019-01-01

How to Cite

Souza, W. F. M. de, Baptista, A. R. de S., Machado, R. L. D., Rocha, C. B., & Moreira, R. F. A. (2019). In silico study of the anti-obesity potential of Baccharis trimera phenolic compounds. Revista Brasileira De Educação E Saúde, 9(1), 32–36. https://doi.org/10.18378/rebes.v9i1.6223

Issue

Section

ARTICLES