Avanços da inteligência artificial na medicina cardiológica: transformando diagnósticos e tratamentos

Autores/as

DOI:

https://doi.org/10.18378/rebes.v14i3.10798

Resumen

El término “Tecnología Médica” engloba herramientas que mejoran la calidad de vida de los pacientes mediante un diagnóstico precoz y tratamientos optimizados. Con la llegada de los teléfonos inteligentes y los wearables impulsados ​​por inteligencia artificial, la medicina ha evolucionado hacia un modelo 5P, promoviendo una mayor autonomía y un seguimiento continuo de la salud. A pesar de avances como el uso de la IA para el diagnóstico cardiovascular, pocas herramientas se han integrado eficazmente en la práctica clínica debido a los datos retrospectivos limitados y a la falta de traducción directa a la práctica. Por lo tanto, el objetivo de este artículo es explorar cómo la IA está revolucionando la cardiología. También analizará cómo los avances actuales y las perspectivas futuras de la IA impactan en la práctica de la cardiología. La investigación es una revisión bibliográfica cualitativa y descriptiva sobre el impacto de las tecnologías de inteligencia artificial en la cardiología, realizada en agosto de 2024. Se utilizó una búsqueda en las bases de datos SciELO y PubMed con los términos “Artificial Intelligence (AI)” AND “Cardiology”. Se seleccionaron artículos originales y gratuitos en portugués de los últimos diez años, excluyendo materiales incompletos, repetidos o no relevantes. La IA ha transformado la medicina cardiovascular, mejorando los diagnósticos, los tratamientos y la personalización de la atención. Las técnicas de aprendizaje automático (ML) y las redes neuronales como CNN y RNN son efectivas para analizar imágenes médicas y documentación clínica, mientras que la robótica asistida por IA mejora la precisión de las cirugías. La IA permite una detección más temprana y precisa de enfermedades cardíacas, y su integración con datos no estructurados promete diagnósticos e intervenciones más eficaces. Los estudios futuros deberían explorar la integración de datos genómicos y superar los desafíos éticos, con el objetivo de hacer que la medicina cardiovascular sea más precisa y personalizada.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

ADEGE, Abebe Belay et al. An indoor and outdoor positioning using a hybrid of support vector machine and deep neural network algorithms. Journal of sensors, v. 2018, n. 1, p. 1253752, 2018.

ALAM, Md Nuho Ul et al. DiabSense: early diagnosis of non-insulin-dependent diabetes mellitus using smartphone-based human activity recognition and diabetic retinopathy analysis with Graph Neural Network. Journal of Big Data, v. 11, n. 1, p. 103, 2024.

AL-MAINI, Mustafa et al. Artificial intelligence-based preventive, personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: a narrative review. Rheumatology International, v. 43, n. 11, p. 1965-1982, 2023.

ARGENTIERO, Adriana et al. The applications of artificial intelligence in cardiovascular magnetic resonance—a comprehensive review. Journal of Clinical Medicine, v. 11, n. 10, p. 2866, 2022.

ASSUNÇÃO, Gustavo et al. An overview of emotion in artificial intelligence. IEEE Transactions on Artificial Intelligence, v. 3, n. 6, p. 867-886, 2022.

BANERJEE, Amit; CHAKRABORTY, Chinmay; RATHI SR, Megha. Medical imaging, artificial intelligence, internet of things, wearable devices in terahertz healthcare technologies. In: Terahertz biomedical and healthcare technologies. Elsevier, p. 145-165, 2020.

CHANDER, Bhanu. Artificial Neural Networks and Support Vector Machine for IoT. Artificial Intelligence-based Internet of Things Systems, p. 77-103, 2022.

CORRAL-ACERO, Jorge et al. The ‘Digital Twin’to enable the vision of precision cardiology. European heart journal, v. 41, n. 48, p. 4556-4564, 2020.

DHRUV, Patel; NASKAR, Subham. Image classification using convolutional neural network (CNN) and recurrent neural network (RNN): A review. Machine learning and information processing: proceedings of ICMLIP 2019, p. 367-381, 2020.

DURGA, S. et al. SmartCardio: Advancing cardiac risk prediction through Internet of things and edge cloud intelligence. IET Wireless Sensor Systems, 2024.

EZUGWU, Absalom E. et al. A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Engineering Applications of Artificial Intelligence, v. 110, p. 104743, 2022.

FAN, Junliang et al. Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models. Agricultural Water Management, v. 245, p. 106547, 2021.

FRIEDRICH, Sarah et al. Applications of artificial intelligence/machine learning approaches in cardiovascular medicine: a systematic review with recommendations. European Heart Journal-Digital Health, v. 2, n. 3, p. 424-436, 2021.

GARCIA, Ernest V. Integrating artificial intelligence and natural language processing for computer-assisted reporting and report understanding in nuclear cardiology. Journal of Nuclear Cardiology, v. 30, n. 3, p. 1180-1190, 2023.

GARDES, Joël et al. Maxwell®: an unsupervised learning approach for 5P medicine. In: MEDINFO 2019: Health and Wellbeing e-Networks for All. IOS Press, 2019. p. 1464-1465.

HAQ, Ikram-Ul; HAQ, Iqraa; XU, Bo. Artificial intelligence in personalized cardiovascular medicine and cardiovascular imaging. Cardiovascular Diagnosis and Therapy, v. 11, n. 3, p. 911, 2021.

HOSSAIN, Elias et al. Natural language processing in electronic health records in relation to healthcare decision-making: a systematic review. Computers in biology and medicine, v. 155, p. 106649, 2023.

ISMAIL, Tevfik F. et al. Cardiac MR: from theory to practice. Frontiers in cardiovascular medicine, v. 9, p. 826283, 2022.

ITCHHAPORIA, Dipti. Artificial intelligence in cardiology. Trends in cardiovascular medicine, v. 32, n. 1, p. 34-41, 2022.

JAYACHITRA, S. et al. AI enabled internet of medical things in smart healthcare. In: AI models for blockchain-based intelligent networks in IoT systems: Concepts, methodologies, tools, and applications. Cham: Springer International Publishing, 2023. p. 141-161.

JOHNSON, Kipp W. et al. Artificial intelligence in cardiology. Journal of the American College of Cardiology, v. 71, n. 23, p. 2668-2679, 2018.

KAKHI, Kourosh et al. The internet of medical things and artificial intelligence: trends, challenges, and opportunities. Biocybernetics and Biomedical Engineering, v. 42, n. 3, p. 749-771, 2022.

KANG, Minhee et al. Recent patient health monitoring platforms incorporating internet of things-enabled smart devices. International neurourology journal, v. 22, n. Suppl 2, p. S76, 2018.

KOLK, M. Z. H. et al. Optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit. Europace, v. 25, n. 9, p. euad271, 2023.

KUFEL, Jakub et al. What is machine learning, artificial neural networks and deep learning?—Examples of practical applications in medicine. Diagnostics, v. 13, n. 15, p. 2582, 2023.

LETZGUS, Simon et al. Toward explainable artificial intelligence for regression models: A methodological perspective. IEEE Signal Processing Magazine, v. 39, n. 4, p. 40-58, 2022.

MADRID, Rossana E. et al. Smartphone-based biosensor devices for healthcare: technologies, trends, and adoption by end-users. Bioengineering, v. 9, n. 3, p. 101, 2022.

MAHESH, Batta. Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], v. 9, n. 1, p. 381-386, 2020.

MANAS, Andres; SENINGE, Lucas; DIXIT, Atray. DNARecords: An extensible sparse format for petabyte scale genomics analysis. bioRxiv, p. 2022.08. 13.503863, 2022.

MORALES, Eduardo F.; ESCALANTE, Hugo Jair. A brief introduction to supervised, unsupervised, and reinforcement learning. In: Biosignal processing and classification using computational learning and intelligence. Academic Press, 2022. p. 111-129.

NAEEM, Samreen et al. An unsupervised machine learning algorithms: Comprehensive review. International Journal of Computing and Digital Systems, 2023.

OIKONOMOU, Evangelos K. et al. An explainable machine learning-based phenomapping strategy for adaptive predictive enrichment in randomized clinical trials. NPJ digital medicine, v. 6, n. 1, p. 217, 2023.

PARK, Seong Ho; HAN, Kyunghwa. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology, v. 286, n. 3, p. 800-809, 2018.

RAHMANI, Amir Masoud et al. Machine learning (ML) in medicine: Review, applications, and challenges. Mathematics, v. 9, n. 22, p. 2970, 2021.

SAIKUMAR, K.; RAJESH, V. A machine intelligence technique for predicting cardiovascular disease (CVD) using Radiology Dataset. International Journal of System Assurance Engineering and Management, v. 15, n. 1, p. 135-151, 2024.

SARAVANAN, Renuka; SUJATHA, Pothula. A state of art techniques on machine learning algorithms: a perspective of supervised learning approaches in data classification. In: 2018 Second international conference on intelligent computing and control systems (ICICCS). IEEE, 2018. p. 945-949.

SARKER, Iqbal H. Machine learning: Algorithms, real-world applications and research directions. SN computer science, v. 2, n. 3, p. 160, 2021.

SHASTRY, K. Aditya; SHASTRY, Aravind. An integrated deep learning and natural language processing approach for continuous remote monitoring in digital health. Decision Analytics Journal, v. 8, p. 100301, 2023.

SINGH, Manasvi et al. Artificial intelligence for cardiovascular disease risk assessment in personalised framework: a scoping review. EClinicalMedicine, v. 73, 2024.

SINGH, Manasvi et al. Personalized Medicine for Cardiovascular Disease Risk in Artificial Intelligence Framework. 2023.

TARIQ, Amara; SANTOS, Thiago; BANERJEE, Imon. Natural Language Processing for Cardiovascular Applications. In: Artificial Intelligence in Cardiothoracic Imaging. Cham: Springer International Publishing, 2022. p. 231-243.

TYAGI, Amit Kumar; CHAHAL, Poonam. Artificial intelligence and machine learning algorithms. In: Challenges and applications for implementing machine learning in computer vision. IGI Global, 2020. p. 188-219.

WHO. World Health Organization. Cardiovascular diseases. 12 fev. 2022. Disponível em: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1. Acesso em: 10 ago. 2024.

YAO, Xiaoxi et al. Artificial intelligence–enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial. Nature Medicine, v. 27, n. 5, p. 815-819, 2021.

Publicado

2024-08-14

Cómo citar

Souza , I. C. M. de, Lima, A. M., Rodrigues , F. M., Oliveira, L. C. de, & Ferreira, M. O. (2024). Avanços da inteligência artificial na medicina cardiológica: transformando diagnósticos e tratamentos . Revista Brasileira De Educação E Saúde, 14(3), 581–587. https://doi.org/10.18378/rebes.v14i3.10798

Número

Sección

ARTÍCULOS

Artículos más leídos del mismo autor/a